
Ahmad Ali AlZubi

Artificial

For Beginners
Intelligence

Abdulrhman A. Alkhanifer

Artificial Intelligence

for Beginners

India | UAE | Nigeria | Uzbekistan | Montenegro | Iraq |

Egypt | Thailand | Uganda | Philippines | Indonesia

www.iarapublication.com

Artificial Intelligence for

Beginners

Authored By:

Ahmad Ali AlZubi

Professor, Computer Science Department, King Saud University,

Riyadh, Saudi Arabia

Abdulrhman A. Alkhanifer

Assistant Professor, Computer Science Department, King Saud

University, Riyadh, Saudi Arabia

Copyright 2024 by Ahmad Ali AlZubi and Abdulrhman A. Alkhanifer

First Impression: July 2024

Artificial Intelligence for Beginners

ISBN: 978-81-19481-79-8

Rs. 1000/- ($80)

No part of the book may be printed, copied, stored, retrieved, duplicated and

reproduced in any form without the written permission of the

editor/publisher.

DISCLAIMER

Information contained in this book has been published by IARA Publication

and has been obtained by the authors from sources believed to be reliable

and correct to the best of their knowledge. The authors are solely responsible

for the contents of the articles compiled in this book. Responsibility of

authenticity of the work or the concepts/views presented by the author

through this book shall lie with the author and the publisher has no role or

claim or any responsibility in this regard. Errors, if any, are purely

unintentional and readers are requested to communicate such error to the

author to avoid discrepancies in future.

Published by:

IARA Publication

IV

Dedicated to
My Parents

Ali AlZubi and Ghazalah AlZubi

V

Preface

Artificial Intelligence (AI) represents a frontier of technology aimed at

creating systems capable of performing tasks that traditionally require

human intelligence. These tasks include learning from experience,

recognizing patterns, understanding natural language, and making decisions.

AI integrates various disciplines such as computer science, mathematics,

psychology, and cognitive science to build systems that can simulate aspects

of human cognition. The ultimate goal is to develop machines that can

execute complex tasks with a high degree of autonomy, efficiency, and

accuracy, enhancing capabilities across diverse fields from healthcare to

finance and beyond.

Machine Learning (ML) is a subset of AI that focuses on developing

algorithms capable of learning from data. Unlike traditional programming,

where explicit instructions are given to the machine, ML algorithms are

designed to identify patterns and make predictions based on historical data.

Techniques such as supervised learning, unsupervised learning, and

reinforcement learning form the backbone of modern ML, enabling systems

to improve their performance over time without human intervention. This

self-improving nature of ML is crucial for developing systems that can adapt

to new data and environments, making them incredibly versatile and

powerful.

Natural Language Processing (NLP) is another critical component of AI,

enabling machines to understand, interpret, and generate human language.

NLP technologies power applications like chatbots, virtual assistants, and

translation services, facilitating more natural and intuitive interactions

VI

between humans and machines. Advances in NLP have been driven by

techniques such as neural networks and deep learning, which have

significantly enhanced the ability of systems to understand context,

sentiment, and nuances in language. This progress has made it possible for

AI systems to engage in more sophisticated conversations and provide

meaningful responses, bridging the gap between human and machine

communication.

Robotics, when combined with AI, results in intelligent machines capable of

performing a variety of tasks in dynamic environments. AI powered robots

are equipped with sensors, actuators, and sophisticated algorithms that allow

them to navigate, manipulate objects, and interact with humans and their

surroundings. From industrial robots performing precise manufacturing tasks

to service robots assisting in healthcare and hospitality, AI-driven robotics is

transforming industries by increasing efficiency, safety, and productivity.

The integration of AI with robotics also paves the way for innovations in

areas such as space exploration, disaster response, and personalized

medicine, where human presence is limited or impractical.

The ethical implications of AI are a significant area of consideration, as

intelligent systems become increasingly integrated into everyday life. Issues

such as privacy, security, bias, and job displacement are at the forefront of

discussions surrounding AI development and deployment. Ensuring that AI

systems are fair, transparent, and accountable is essential to fostering trust

and acceptance among users and stakeholders. Researchers, policymakers,

and industry leaders are working collaboratively to establish guidelines,

standards, and regulations that promote ethical AI practices while

VII

encouraging innovation and progress. This balance is crucial for harnessing

the full potential of AI while mitigating its risks and challenges.

Artificial Intelligence for Beginners is not just a technical exploration but a

journey into the transformative power of technology. As AI continues to

evolve, it promises to redefine the boundaries of what machines can achieve,

augmenting human capabilities and solving some of the most complex

challenges facing society today. The ongoing advancements in AI

technologies and their applications hold the potential to revolutionize

industries, improve quality of life, and create new opportunities for growth

and innovation. Embracing this future requires a commitment to continuous

learning, ethical consideration, and collaboration across disciplines to ensure

that AI benefits everyone and contributes to a more sustainable and equitable

world.

This book delves into the fascinating world of artificial intelligence,

providing insights into the mechanisms and innovations that drive intelligent

systems, transforming industries and everyday life.

VIII

Acknowledgement

We would like to thank and heartfelt gratitude to King Saud University,

Riyadh, Saudi Arabia for their supports.

We extend our heartfelt gratitude to the individuals who have contributed to

the fruition of this endeavour, "Artificial Intelligence for Beginners" First

and foremost, we express our deepest appreciation to the specialists in

Artificial Intelligence whose expertise and insights have shaped the content

of this book, enabling a comprehensive understanding of the Artificial

Intelligence.

We extend our thanks to our colleagues for their invaluable support and

encouragement throughout this journey.

We would like to thank our family and loved ones for their constant support,

comprehension, and inspiration during the many hours that I have invested

in the writing, research, and editing of this text.

Lastly, we express gratitude to the readers for their interest and trust in this

work, with the hope that it serves as a meaningful resource in the field of

Artificial Intelligence.

Ahmad Ali AlZubi

Abdulrhman A. Alkhanifer

Contents

Preface (v)

Acknowledgement (viii)

1. Introduction 1
• The Impact of Artificial Intelligence; AI in myth, fiction and

speculation; Agent Environment in AI; Understand Types of

Environments in Artificial Intelligence; Type of Artificial
Intelligence; Artificial general intelligence; Revolution of AI in
2020! Is It Real?; Machine learning; General Artificial Intelligence;
Tools and methods in Machine Learning

2. Artificial Intelligence Systems in Computer Projects 33
• AI – Current Status of Technology; Approach of Artificial

Intelligence; Branches of Artificial Intelligence; Outline and History
in Artificial Intelligence; Artificial Intelligence And Human Minds;
Acting humanly: The Turing Test approach; Artificial neural

network

3. Categories of Model-Based AI Agents 61
• Intelligent agent; Intelligent Agents in Artificial Intelligence;

Exploring Intelligent Agents in Artificial Intelligence; The Number
and Types of Agents in Artificial Intelligence; Agents in Artificial
Intelligence; Intelligent Agents; Types of AI Agents; AI - Agents
& Environments; Methods And Goals In AI; Alan Turing And The

Beginning Of AI; Artificial Intelligence Framework: A Visual
Introduction to Machine Learning and AI; Types Of Agents In
Artificial Intelligence; Rational agent; Interaction of Agents with
Environment

4. Applications of Artificial Intelligence 105
• Intelligent Agents: Characteristics and Applications | AI; The

Roots of Artificial Intelligence; Anticipatory Socialization and
Intelligence AnalysIs; Reconfigurable Computing; Reaction,

Proaction and Anticipation; Anticipation in Evolution and
Cognition

5. Artificial Intelligence and Machine Learning
in Autonomous Systems 138

• Current Machine Learning Applications in Robotics; Robotics:
Ethics of Artificial Intelligence; Artificial Intelligence and Machine
Learning; Machine learning and applications; Machine Learning

in Robotics in Modern Applications; Artificial Intelligence (AI) in
robotics: machine learning; The Intelligence Community’s Neglect
of Strategic Intelligence; AI and our future workforce; Machine
learning

6. Artificial Intelligence in Software Metrics
for Algorithmic Trading 172

• Software Metrics in Algorithmic; Algorithmic Trading

7. Algorithms in Informed Search and
Hill Climbing in AI 208

• AI - Popular Search Algorithms; Best First Search Algorithm in
AI | Concept, Implementation, Advantages, Disadvantages; AO*
Search(Graph): Concept, Algorithm, Implementation, Advantages,

Disadvantages; Define Beam Search; Informed Search Algorithms;
Hill Climbing Algorithm; Informed Search; Introduction to Hill
Climbing in Artificial Intelligence

8. System Virtual Machines in Artificial Intelligence 245
• Virtual machine; Machine Learning; Machine Level Operations;

Virtual machine and Client server;
Hardware virtualization

System Virtual Machine;

Bibliography

277

Index

279

Introduction 1

Introduction

Artificial Intelligence System (AIS) was a distributed computing project
undertaken by Intelligence Realm, Inc. with the long-term goal of simulating
the human brain in real time, complete with artificial consciousness and
artificial general intelligence. They claimed to have found, in research, the
‚mechanisms of knowledge representation in the brain which is equivalent
to finding artificial intelligence‛, before moving into the developmental
phase.

Science

The project’s initial goal was recreating the largest brain simulation
to date, performed by neuroscientist Eugene M. Izhikevich of The
Neurosciences Institute in San Diego, California. Izhikevich simulated 1
second of activity of 100 billion neurons (the estimated number of neurons
in the human brain) in 50 days using a cluster of 27 3-gigahertz processors.
He extrapolated that a real-time simulation of the brain could not be
achieved before 2016. The project aimed to disprove this prediction.

On July 12, 2008, AIS announced that the first phase of the project had
been completed by reaching the 100 billion neuron mark. The project then
continued to simulate neurons while they completed the development of
the other applications.

AIS simulated the brain via an artificial neural network, and used
Hodgkin–Huxley models. The project utilized the BOINC distributed
computing platform. In version 1.08 of the software each work unit received
by a volunteer simulated 500,000 neurons for 100 milliseconds at 5
millisecond time steps (the estimated firing rate of a human neuron).

The application had four primary modules—for creating neurons,

simulating neurons, visualizing neurons, and finally, knowledge acquisition.

2 Artificial Intelligence : Making a System Intelligent

Intention was that the neuronal generator would eventually use genetic
algorithms to generate neurons for simulation. The neuron simulator used
mathematical models to simulate those neurons. Initially, Hodgkin–Huxley
models were used, but more models (perhaps hundreds) were intended
to be utilized in the future. The visualization software was to allow the
administrators to monitor and control the neuronal simulators. The
knowledge acquisition module involved feeding information to the system
and training it to build its knowledge base.

The AIS project had successfully simulated over 700 billion neurons

by April 2009.

The project was closed in November 2010 as the BOINC program of

the project did not work.

THE IMPACT OF ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) is becoming an important part of our daily
life, in social as well as the business environment. From healthcare to the
military, this technology is being introduced in all the sectors to reduce
human effort and give an accurate and faster result.

We are fortunate to live in this generation, which is full of technological
advancements. Now we live in a time where a lot of work is taken over
by machines & software. AI has a special place in all the advancement
made today. As we know that AI is the science of computers and machines
developing intelligence like humans. In this technology, the machines can
do some of the simples to complex tasks that we as humans need to do
regularly.

The AI systems are capable enough to reduce human efforts in
numerous areas. To conduct different operations in the industry, many of
them are using artificial intelligence to create machines that perform various
activities regularly. The artificial intelligence applications help to get the
work done faster and with accurate results.

General Advantages

While AI has been very useful in many domains like healthcare,

automotive etc, there are some general advantages you get in any field by

applying AI. Let us have a look at some of them:

Daily operations

Computed methods for automated reasoning, learning and perception

Introduction 3

have become a common phenomenon in our everyday lives. We have our

Siri or Cortana to help us out.

The smartphone is an apt and everyday example of how we use AI.
We are also hitting the road for long drives and trips with the help of GPS.
In utilities, we find that they can predict what we are going to type and
correct the spellings. That is machine intelligence at work.

When we take a picture, the AI algorithm identifies and detects the

person’s face and tags the individuals when we are posting our photographs

on social media sites.

Fewer Errors

AI helps us in reducing the errors and the chance of reaching accuracy
with a greater degree of precision. It is applied in various studies such as
exploration of space. Intelligent robots are fed with data and are sent to
explore space. Since they are more resistant and have a greater ability to
endure the space and hostile atmosphere due to their metal bodies. They
are built and acclimatized in such a way that they cannot be altered or
get damaged or malfunction in a hostile environment.

Repetitive Tasks

Repetitive tasks are monotonous in nature can be carried out with the
help of machine intelligence. Machines think faster than humans and can
be put to multi-tasking. Machine intelligence can be employed to carry out
dangerous tasks. Their parameters, unlike humans, can be adjusted. Their
speed and time are calculation based parameters only.

When humans play a computer game or run a computer-controlled
robot, we are actually interacting with artificial intelligence. In the game
we are playing, the computer is our opponent. The machine intelligence
plans the game movement in response to our movements. We can consider
gaming to be the most common use of the benefits of artificial intelligence.

Difficult Exploration

Artificial intelligence and the science of robotics can be put to use in
mining and other fuel exploration processes. Not only that, these complex
machines can be used for exploring the ocean floor and hence overcome
the human limitations.

Due to the programming of the robots, they can perform more laborious
and hard work with greater responsibility. Moreover, they do not wear out
easily.

4 Artificial Intelligence : Making a System Intelligent

Digital Assistants

Highly advanced organizations use ‘avatars’ which are replicas or
digital assistants who can actually interact with the users, thus saving the

need for human resources.

For artificial thinkers, emotions come in the way of rational thinking
and are not a distraction at all. The complete absence of the emotional side,
makes the robots think logically and take the right program decisions.
Emotions are associated with moods that can cloud judgment and affect
human efficiency. This is completely ruled out for machine intelligence.

Availability 24x7

Unlike humans, machines do not require frequent breaks and

refreshments. They are programmed for long hours and can continuously

perform without getting bored or distracted or even tired.

Domain-wise Advantages

AI for Good

‘AI for Good’ is a United Nations platform. It is centred around an
annual Global Summit that promotes the exchange on the beneficial use
of AI by building specific projects.

The purpose of organizing global summits that are action-oriented,
came from an existing discussion in AI research being dominated by
research streams such as the Netflix Prize (improve the movie
recommendation algorithm). The AI for Good series aims to bring forward
AI research topics that contribute towards more global obstacles, in
particular through the Sustainable Development Goals, while at the same
time avoiding typical UN-style conferences where results are usually more
abstract.

Healthcare

The main purpose of healthcare AI applications is to examine
relationships between prevention or treatment techniques and patient
outcomes. AI programs have been built and implemented to practices such
as diagnosis processes, treatment protocol development, drug development,
personalized medicine, and patient monitoring and care. Many medical
institutions have developed AI algorithms for their departments.

Large technology companies and even startups have also developed

AI algorithms for healthcare. Additionally, hospitals are looking to AI

Introduction 5

solutions to support operational initiatives that increase cost-saving,

improve patient satisfaction, and satisfy their staffing and workforce needs.

Companies are also developing predictive analytics solutions that
help healthcare managers improve business operations through increasing
utilization, decreasing patient boarding, reducing the length of stay and
optimizing staffing levels.

Agriculture

In agriculture, new AI developments show advances in gaining yield
and to increase the research and development of growing crops. AI now
predicts the time it takes for a crop like a vegetable to be ripe and ready
for picking thus increasing the efficiency of farming. These advances go
on including Crop and Soil Monitoring, Agricultural Robots, and Predictive
Analytics. Crop and soil monitoring uses new algorithms and data collected
in the field to manage and track the health of crops making it easier and
more sustainable for the farmers.

More specializations of AI in agriculture is one such as greenhouse

automation, simulation, modeling and optimization techniques.

Due to the rise in population and the increase in demand for food in
the future, there will need to be at least a 70% boost in yield from agriculture
to support this new demand. More and more of the public perceives that
the adaption of these new techniques and the use of AI will help reach
that goal.

Automative

The Air Operations Division (AOD) uses AI for the rule-based expert
systems. The AOD has use for artificial intelligence for surrogate operators
for combat and training simulators, mission management aids, support
systems for tactical decision making, and post-processing of the simulator
data into symbolic summaries.

The AOD also uses artificial intelligence in speech recognition software.
The air traffic controllers (ATCs) are giving directions to the artificial pilots
and the AOD wants the pilots to respond to the ATC’s with simple responses.
The programs that incorporate the speech software must be trained, which
means they use neural networks. This is an early stage of the program that
has plenty of room for improvement. The improvements are imperative
because ATCs use very specific dialogue and the software needs to be able
to communicate correctly and promptly every time.

6 Artificial Intelligence : Making a System Intelligent

Aviation

AI-supported Design of Aircraft is used to help designers in the

process of creating conceptual designs of aircraft.

This program empowers the designers to concentrate more on the
design itself and less on the design process. The software also allows the
user to focus less on software tools. The AIDA uses rule-based systems to
compute its data. This is a diagram of the arrangement of the AIDA
modules. Although simple, the program is proving effective.

Haitham Baomar and Peter Bentley are leading a team from the
University College of London to develop an artificial intelligence-based
Intelligent Autopilot System (IAS) designed to teach an autopilot system
to behave like a highly experienced pilot who is faced with an emergency
situation such as severe weather, turbulence, or system failure.

Education

One of the more promising innovations is the idea of a personal AI
tutor or assistant for each individual student. Because a single teacher
can’t work with every student at once, AI tutors would allow for students
to get extra, one-on-one help in areas of needed growth.

There are many new possibilities due to what has been coined by The
New York Times as ‚The Great AI Awakening.‛ One of these possibilities
mentioned by Forbes included the providing of adaptive learning programs,
which assess and react to a student’s emotions and learning preferences.

Many teachers fear the idea of AI replacing them in the classroom,
especially with the idea of personal AI assistants for each student. The
reality is, AI can create a more dystopian environment with revenge
effects. It is inevitable that AI technologies will be taking over the classroom
in the years to come, thus it is essential that the kinks of these new
innovations are worked out before teachers decide whether or not to
implement them into their daily schedules.

Arts

Artificial Intelligence has inspired numerous creative applications
including its usage to produce visual art. The recent AI-based exhibitions
provide a good overview of the historical applications of AI for art,
architecture, and design.

These exhibitions showcasing the usage of AI to produce art include
the Google-sponsored benefit and auction at the Gray Area Foundation

Introduction 7

in San Francisco, where artists experimented with the DeepDream

algorithm.

The Association of Computing Machinery dedicated a special magazine

issue to the subject of computers and art highlighting the role of machine

learning in the arts.

Finance & Economics

The 1980s was really when AI started to become prominent in the
finance world. This is when expert systems became more of a commercial
product in the financial field. Their first function was to help give financial
plans for people with incomes over a threshold. That then led to the Client
Profiling System that was used for a specific band of incomes. The 1990s
was a lot more about fraud detection. One of the systems that were started
in 1993 was able to review over lacs of transactions per week and over
two years it helped identify 400 potential cases of money laundering which
would have been equal to $1 billion. Although expert systems did not last
in the finance world, it did help jump-start the use of AI and help make
it what it is today.

These days AI is prominent in the following use cases in the financial

world:

• Algorithmic Trading

• Market Analysis

• Personal Finance

• Underwriting

Government

The potential uses of AI in government are wide and varied, with
recent research suggesting that ‘Cognitive technologies could eventually
revolutionize every facet of government operations’. Experts in government
consulting suggest these type of government problems are appropriate for
AI applications:

• Resource allocation

• Large public & employees datasets

• Experts shortage

• Predictable scenarios

• Procedural tasks

• Diverse data

8 Artificial Intelligence : Making a System Intelligent

Military

The main military applications of Artificial Intelligence and Machine

Learning are to enhance C2, Communications, Sensors, Integration and

Interoperability.

Artificial Intelligence technologies enable coordination of sensors and
effectors, threat detection and identification, marking of enemy positions,
target acquisition, coordination and deconfliction of distributed Join Fires
between networked combat vehicles and tanks also inside Manned and
Unmanned Teams (MUM-T).

Gaming

In video games, artificial intelligence is routinely used to generate

dynamic purposeful behaviour in non-player characters (NPCs). In addition,

well-understood AI techniques are routinely used for pathfinding.

Some researchers consider NPC AI in games to be a ‚solved problem‛
for most production tasks. Games with more atypical AI include the AI
director of Left 4 Dead (2008) and the neuroevolutionary training of platoons
in Supreme Commander 2 (2010).

News & Publishing

Companies are making computer-generated news and reports
commercially available, including summarizing team sporting events
based on statistical data from the game in English and also financial
reports and real estate analyses.

There are software firms that help publishers increase traffic by
‘intelligently’ posting articles on social media platforms such as Facebook
and Twitter. Another firm uses AI to turn structured data into intelligent
comments and recommendations in natural language such as financial
reports, executive summaries, personalized sales or marketing
documents.

Yet another firm has launched an app that is designed to learn how
to best engage each individual reader with the exact articles — sent through
the right channel at the right time — that will be most relevant to the
reader. There are firms which are helping media companies with their AI-
powered video personalization and programming platform.

Advertising

It is possible to use AI to predict or generalize the behaviour of

Introduction 9

customers from their digital footprints in order to target them with
personalized promotions or build customer personas automatically. A
documented case reports that online gambling companies were using AI
to improve customer targeting.

Moreover, the application of Personality computing AI models can
help to reduce the cost of advertising campaigns by adding psychological
targeting to more traditional sociodemographic or behavioural targeting.

Disadvantages

As every bright side has a darker version in it, AI also has some

disadvantages. Let’s have a look at some of them:

AI Bias

One concern is that AI programs may be programmed to be biased
against certain groups, such as women and minorities because most of
the developers are wealthy Caucasian men. Recent researches show that
support for artificial intelligence is higher among men than women.

Algorithms have a host of applications in today’s legal system already,
assisting officials ranging from judges to parole officers and public defenders
in gauging the predicted likelihood of recidivism of defendants.

An AI-based criminal offender profiling application assigns an
exceptionally elevated risk of recidivism to black defendants while,
conversely, ascribing low-risk estimate to white defendants significantly
more often than statistically expected.

Impact on Employment

The relationship between automation and employment has always
been complicated. While automation eliminates old jobs, it also creates
new jobs through micro-economic and macro-economic effects. Unlike
previous waves of automation, many middle-class jobs may be eliminated
by artificial intelligence.

The Economist states that ‘the worry that AI could do to white-collar
jobs what steam power did to blue-collar ones during the Industrial
Revolution’ is ‘worth taking seriously’. Jobs at extreme risk range from
paralegals to fast-food cooks, while job demand is likely to increase for
care-related professions ranging from personal healthcare to the clergy.

Many futurists warn that these jobs may be automated in the next

couple of decades and that many of the new jobs may not be ‘accessible

10 Artificial Intelligence : Making a System Intelligent

to people with average capability’, even with retraining. Economists point
out that in the past technology has tended to increase rather than reduce
total employment, but acknowledge that ‘we’re in uncharted territory’
with AI.

Effect on Humanity

Some experts suggest that AI applications cannot, by definition,
successfully simulate genuine human empathy and that the use of AI
technology in fields such as customer service or psychotherapy was deeply
misguided. Few experts are also bothered that AI researchers (and some
philosophers) were willing to view the human mind as nothing more than
a computer program (a position is now known as computationalism)
which imply that AI research devalues human life.

Autonomous Weapons

Currently, many countries are researching battlefield robots, including
the United States, China, Russia, and the United Kingdom. Many people
concerned about risk from superintelligent AI also want to limit the use
of artificial soldiers and drones.

Threat to Our Existence

Physicist Stephen Hawking, Microsoft founder Bill Gates, and SpaceX
founder Elon Musk have expressed concerns about the possibility that AI
could evolve to the point that humans could not control it, with Hawking
theorizing that this could ‘spell the end of the human race’.

For this danger to be realized, the hypothetical AI would have to
overpower or out-think all of humanity, which a minority of experts argue
is a possibility far enough in the future to not be worth researching. Other
counterarguments revolve around humans being either intrinsically or
convergently valuable from the perspective of AI.

Conclusion

Creating artificial intelligence is perhaps the biggest event for
mankind. If used and developed constructively, we can use artificial
intelligence to eradicate poverty and hunger from the human race.

The argument that will we ever achieve that supreme level of AI ever
is ongoing. The creators and perpetrators of artificial intelligence insist
that machine intelligence is beneficial and has been created to help the
human race.

Introduction 11

The power of artificial intelligence that inadvertently causes
destruction and damage cannot be ignored. What will help us control
it better is research and in-depth study of the importance of artificial
intelligence. Research alone can control the potentially harmful
consequences of AI and help us enjoy the fruit of this innovation.

AI will not only change the way we think or live our lives but also
explores new horizons, even if its space or the ocean. Humans are getting
continually better in defining their desires and quickly transforming this
desire into reality. Things will happen so fast that we will not notice the
minor changes and will be easily adaptable to the change it brings to us.

AI IN MYTH, FICTION AND SPECULATION

Mechanical men and artificial beings appear in Greek myths, such as
the golden robots of Hephaestus and Pygmalion’s Galatea. In the Middle
Ages, there were rumors of secret mystical or alchemical means of placing
mind into matter, such as Jâbir ibn Hayyân’s Takwin, Paracelsus’ homunculus
and Rabbi Judah Loew’s Golem. By the 19th century, ideas about artificial
men and thinking machines were developed in fiction, as in Mary Shelley’s
Frankenstein or Karel Èapek’s R.U.R. (Rossum’s Universal Robots), and
speculation, such as Samuel Butler’s ‚Darwin among the Machines.‛ AI
has continued to be an important element of science fiction into the present.

Automatons

Realistic humanoid automatons were built by craftsman from every
civilization, including Yan Shi, Hero of Alexandria, Al-Jazari , Pierre Jaquet-
Droz, and Wolfgang von Kempelen. The oldest known automatons were
the sacred statues of ancient Egypt and Greece. The faithful believed that
craftsman had imbued these figures with very real minds, capable of
wisdom and emotion—Hermes Trismegistus wrote that ‚by discovering
the true nature of the gods, man has been able to reproduce it.‛

Formal reasoning

Artificial intelligence is based on the assumption that the process of
human thought can be mechanized. The study of mechanical—or
‚formal‛—reasoning has a long history. Chinese, Indian and Greek
philosophers all developed structured methods of formal deduction in the
first millennium BCE. Their ideas were developed over the centuries by
philosophers such as Aristotle (who gave a formal analysis of the syllogism),

12 Artificial Intelligence : Making a System Intelligent

Euclid (whose Elements was a model of formal reasoning), al-Khwârizmî
(who developed algebra and gave his name to ‚algorithm‛) and European
scholastic philosophers such as William of Ockham and Duns Scotus.

Spanish philosopher Ramon Llull (1232–1315) developed several logical

machines devoted to the production of knowledge by logical means; Llull
described his machines as mechanical entities that could combine basic
and undeniable truths by simple logical operations, produced by the
machine by mechanical meanings, in such ways as to produce all the
possible knowledge. Llull’s work had a great influence on Gottfried Leibniz,
who redeveloped his ideas.

In the 17th century, Leibniz, Thomas Hobbes and René Descartes
explored the possibility that all rational thought could be made as systematic
as algebra or geometry. Hobbes famously wrote in Leviathan: ‚reason is
nothing but reckoning‛. Leibniz envisioned a universal language of
reasoning (his characteristica universalis) which would reduce argumentation
to calculation, so that ‚there would be no more need of disputation between
two philosophers than between two accountants. For it would suffice to
take their pencils in hand, down to their slates, and to say each other (with
a friend as witness, if they liked): Let us calculate.‛ These philosophers had
begun to articulate the physical symbol system hypothesis that would
become the guiding faith of AI research.

In the 20th century, the study of mathematical logic provided the
essential breakthrough that made artificial intelligence seem plausible.
The foundations had been set by such works as Boole’s The Laws of Thought

and Frege’s Begriffsschrift. Building on Frege’s system, Russell and Whitehead
presented a formal treatment of the foundations of mathematics in their
masterpiece, the Principia Mathematica in 1913. Inspired by Russell’s success,
David Hilbert challenged mathematicians of the 1920s and 30s to answer
this fundamental question: ‚can all of mathematical reasoning be
formalized?‛ His question was answered by Gödel’s incompleteness proof,
Turing’s machine and Church’s Lambda calculus.

Their answer was surprising in two ways. First, they proved that there
were, in fact, limits to what mathematical logic could accomplish. But
second (and more important for AI) their work suggested that, within
these limits, any form of mathematical reasoning could be mechanized.
The Church-Turing thesis implied that a mechanical device, shuffling
symbols as simple as 0 and 1, could imitate any conceivable process of
mathematical deduction. The key insight was the Turing machine—a simple
theoretical construct that captured the essence of abstract symbol

Introduction 13

manipulation. This invention would inspire a handful of scientists to begin

discussing the possibility of thinking machines.

Computer science

Calculating machines were built in antiquity and improved throughout
history by many mathematicians, including (once again) philosopher
Gottfried Leibniz. In the early 19th century, Charles Babbage designed a
programmable computer (the Analytical Engine), although it was never
built. Ada Lovelace speculated that the machine ‚might compose elaborate
and scientific pieces of music of any degree of complexity or extent‛. (She
is often credited as the first programmer because of a set of notes she wrote
that completely detail a method for calculating Bernoulli numbers with
the Engine.)

The first modern computers were the massive code breaking machines
of the Second World War (such as Z3, ENIAC and Colossus). The latter
two of these machines were based on the theoretical foundation laid by
Alan Turing and developed by John von Neumann.

AGENT ENVIRONMENT IN AI

An environment is everything in the world which surrounds the
agent, but it is not a part of an agent itself. An environment can be
described as a situation in which an agent is present.

The environment is where agent lives, operate and provide the agent

with something to sense and act upon it. An environment is mostly said

to be non-feministic.

Features of Environment

As per Russell and Norvig, an environment can have various features
from the point of view of an agent:

Fully observable vs Partially Observable

• If an agent sensor can sense or access the complete state of an

environment at each point of time then it is a fully observable

environment, else it is partially observable.

• A fully observable environment is easy as there is no need to

maintain the internal state to keep track history of the world.

• An agent with no sensors in all environments then such an

environment is called as unobservable.

14 Artificial Intelligence : Making a System Intelligent

Deterministic vs Stochastic

• If an agent’s current state and selected action can completely
determine the next state of the environment, then such environment
is called a deterministic environment.

• A stochastic environment is random in nature and cannot be

determined completely by an agent.

• In a deterministic, fully observable environment, agent does not

need to worry about uncertainty.

Episodic vs Sequential

• In an episodic environment, there is a series of one-shot actions, and
only the current percept is required for the action.

• However, in Sequential environment, an agent requires memory of

past actions to determine the next best actions.

Single-agent vs Multi-agent

• If only one agent is involved in an environment, and operating
by itself then such an environment is called single agent
environment.

• However, if multiple agents are operating in an environment, then
such an environment is called a multi-agent environment.

• The agent design problems in the multi-agent environment are
different from single agent environment.

Static vs Dynamic

• If the environment can change itself while an agent is deliberating

then such environment is called a dynamic environment else it is

called a static environment.

• Static environments are easy to deal because an agent does not need

to continue looking at the world while deciding for an action.

• However for dynamic environment, agents need to keep looking

at the world at each action.

• Taxi driving is an example of a dynamic environment whereas
Crossword puzzles are an example of a static environment.

Discrete vs Continuous

• If in an environment there are a finite number of percepts and

actions that can be performed within it, then such an environment

Introduction 15

is called a discrete environment else it is called continuous

environment.

• A chess gamecomes under discrete environment as there is a finite

number of moves that can be performed.

• A self-driving car is an example of a continuous environment.

Known vs Unknown

• Known and unknown are not actually a feature of an environment,

but it is an agent’s state of knowledge to perform an action.

• In a known environment, the results for all actions are known to
the agent. While in unknown environment, agent needs to learn
how it works in order to perform an action.

• It is quite possible that a known environment to be partially

observable and an Unknown environment to be fully observable.

Accessible vs Inaccessible

• If an agent can obtain complete and accurate information about the
state’s environment, then such an environment is called an Accessible
environment else it is called inaccessible.

• Information about an event on earth is an example of Inaccessible

environment.

UNDERSTAND TYPES OF ENVIRONMENTS IN ARTIFICIAL

INTELLIGENCE

The Environment is the surrounding world around the agent which
is not part of the agent itself. It’s important to understand the nature of
the environment when solving a problem using artificial intelligence. For
example, program a chess bot, the environment is a chessboard and creating
a room cleaner robot, the environment is Room.

Each environment has its own properties and agents should be
designed such as it can explore environment states using sensors and act
accordingly using actuators. In this guide, we’re going to understand all
types of environments with real-life examples.

Fully Observable vs Partially-Observable

In a fully observable environment, The Agent is familiar with the

complete state of the environment at a given time. There will be no portion

of the environment that is hidden for the agent.

16 Artificial Intelligence : Making a System Intelligent

Real-life Example: While running a car on the road (Environment),
The driver (Agent) is able to see road conditions, signboard and pedestrians
on the road at a given time and drive accordingly. So Road is a fully
observable environment for a driver while driving the car.

Real-life Example: Playing card games is a perfect example of a partially-
observable environment where a player is not aware of the card in the
opponent’s hand. Why partially-observable? Because the other parts of the
environment, e.g opponent, game name, etc are known for the player
(Agent).

Deterministic vs Stochastic

Deterministic are the environments where the next state is observable
at a given time. So there is no uncertainty in the environment.

Real-life Example: The traffic signal is a deterministic environment

where the next signal is known for a pedestrian (Agent)

The Stochastic environment is the opposite of a deterministic
environment. The next state is totally unpredictable for the agent. So
randomness exists in the environment.

Real-life Example: The radio station is a stochastic environment where
the listener is not aware about the next song or playing a soccer is stochastic
environment.

Episodic vs Sequential

Episodic is an environment where each state is independent of each

other. The action on a state has nothing to do with the next state.

Real-life Example: A support bot (agent) answer to a question and
then answer to another question and so on. So each question-answer is
a single episode.

The sequential environment is an environment where the next state
is dependent on the current action. So agent current action can change all
of the future states of the environment.

Real-life Example: Playing tennis is a perfect example where a player

observes the opponent’s shot and takes action.

Static vs Dynamic

The Static environment is completely unchanged while an agent is
precepting the environment.

Introduction 17

Real-life Example: Cleaning a room (Environment) by a dry-cleaner
reboot (Agent) is an example of a static environment where the room is
static while cleaning.

Dynamic Environment could be changed while an agent is precepting
the environment. So agents keep looking at the environment while taking
action.

Real-life Example: Playing soccer is a dynamic environment where

players’ positions keep changing throughout the game. So a player hit the

ball by observing the opposite team.

Discrete vs Continuous

Discrete Environment consists of a finite number of states and agents
have a finite number of actions.

Real-life Example: Choices of a move (action) in a tic-tac game are

finite on a finite number of boxes on the board (Environment).

While in a Continuous environment, the environment can have an
infinite number of states. So the possibilities of taking an action are also
infinite.

Real-life Example: In a basketball game, the position of players
(Environment) keeps changing continuously and hitting (Action) the ball
towards the basket can have different angles and speed so infinite
possibilities.

Single Agent vs Multi-Agent

Single agent environment where an environment is explored by a

single agent. All actions are performed by a single agent in the environment.

Real-life Example: Playing tennis against the ball is a single agent
environment where there is only one player.

If two or more agents are taking actions in the environment, it is

known as a multi-agent environment.

Real-life Example: Playing a soccer match is a multi-agent environment.

TYPE OF ARTIFICIAL INTELLIGENCE

Artificial intelligence can be divided into three subfields:

• Artificial intelligence

• Machine learning

• Deep learning.

18 Artificial Intelligence : Making a System Intelligent

Machine Learning

Machine learning is the art of study of algorithms that learn from

examples and experiences.

Machine learning is based on the idea that there exist some patterns

in the data that were identified and used for future predictions.

The difference from hardcoding rules is that the machine learns on

its own to find such rules.

Deep learning

Deep learning is a sub-field of machine learning. Deep learning does
not mean the machine learns more in-depth knowledge; it means the
machine uses different layers to learn from the data. The depth of the
model is represented by the number of layers in the model. For instance,
Google LeNet model for image recognition counts 22 layers.

In deep learning, the learning phase is done through a neural network.
A neural network is an architecture where the layers are stacked on top
of each other.

AI vs. Machine Learning

Most of our smartphone, daily device or even the internet uses Artificial
intelligence. Very often, AI and machine learning are used interchangeably
by big companies that want to announce their latest innovation. However,
Machine learning and AI are different in some ways.

AI- artificial intelligence- is the science of training machines to perform
human tasks. The term was invented in the 1950s when scientists began
exploring how computers could solve problems on their own.

Artificial Intelligence is a computer that is given human-like
properties. Take our brain; it works effortlessly and seamlessly to
calculate the world around us. Artificial Intelligence is the concept that
a computer can do the same. It can be said that AI is the large science
that mimics human aptitudes.

Machine learning is a distinct subset of AI that trains a machine how
to learn. Machine learning models look for patterns in data and try to
conclude.

In a nutshell, the machine does not need to be explicitly programmed
by people. The programmers give some examples, and the computer is
going to learn what to do from those samples.

Introduction 19

Where is AI used? Examples

AI has broad applications-

• Artificial intelligence is used to reduce or avoid the repetitive task.
For instance, AI can repeat a task continuously, without fatigue. In
fact, AI never rests, and it is indifferent to the task to carry out

• Artificial intelligence improves an existing product. Before the age
of machine learning, core products were building upon hard-code
rule. Firms introduced artificial intelligence to enhance the
functionality of the product rather than starting from scratch to
design new products. You can think of a Facebook image. A few
years ago, you had to tag your friends manually. Nowadays, with
the help of AI, Facebook gives you a friend’s recommendation.

AI is used in all the industries, from marketing to supply chain,
finance, food-processing sector. According to a McKinsey survey, financial
services and high tech communication are leading the AI fields.

Why is AI booming now?

A neural network has been out since the nineties with the seminal

paper of Yann LeCun. However, it started to become famous around the

year 2012. Explained by three critical factors for its popularity are:

1. Hardware

2. Data

3. Algorithm

Machine learning is an experimental field, meaning it needs to have
data to test new ideas or approaches. With the boom of the internet, data
became more easily accessible. Besides, giant companies like NVIDIA and
AMD have developed high-performance graphics chips for the gaming
market.

Hardware

In the last twenty years, the power of the CPU has exploded, allowing
the user to train a small deep-learning model on any laptop. However, to
process a deep-learning model for computer vision or deep learning, you
need a more powerful machine. Thanks to the investment of NVIDIA and
AMD, a new generation of GPU (graphical processing unit) are available.
These chips allow parallel computations. It means the machine can separate
the computations over several GPU to speed up the calculations.

20 Artificial Intelligence : Making a System Intelligent

For instance, with an NVIDIA TITAN X, it takes two days to train a
model called ImageNet against weeks for a traditional CPU. Besides, big
companies use clusters of GPU to train deep learning model with the
NVIDIA Tesla K80 because it helps to reduce the data center cost and
provide better performances.

Data

Deep learning is the structure of the model, and the data is the fluid
to make it alive. Data powers the artificial intelligence. Without data,
nothing can be done. Latest Technologies have pushed the boundaries of
data storage. It is easier than ever to store a high amount of data in a data
center.

Internet revolution makes data collection and distribution available

to feed machine learning algorithm. If you are familiar with Flickr, Instagram

or any other app with images, you can guess their AI potential.

There are millions of pictures with tags available on these websites.
Those pictures can be used to train a neural network model to recognize
an object on the picture without the need to manually collect and label
the data.

Artificial Intelligence combined with data is the new gold. Data is a
unique competitive advantage that no firm should neglect. AI provides the
best answers from your data. When all the firms can have the same
technologies, the one with data will have a competitive advantage over
the other. To give an idea, the world creates about 2.2 exabytes, or 2.2
billion gigabytes, every day.

A company needs exceptionally diverse data sources to be able to find

the patterns and learn and in a substantial volume.

Algorithm

Hardware is more powerful than ever, data is easily accessible, but
one thing that makes the neural network more reliable is the development
of more accurate algorithms. Primary neural networks are a simple
multiplication matrix without in-depth statistical properties. Since 2010,
remarkable discoveries have been made to improve the neural network.
Artificial intelligence uses a progressive learning algorithm to let the data
do the programming. It means, the computer can teach itself how to
perform different tasks, like finding anomalies, become a chatbot.

Introduction 21

ARTIFICIAL GENERAL INTELLIGENCE

Artificial intelligence is a branch of computer science that attempts

to understand the essence of intelligence and produce a new intelligent

machine that responds in a manner similar to human intelligence.

Research in this area includes robotics, speech recognition, image
recognition, Natural language processing and expert systems. Since the
birth of artificial intelligence, the theory and technology have become
more and more mature, and the application fields have been expanding.

It is conceivable that the technological products brought by artificial
intelligence in the future will be the ‚container‛ of human wisdom. Artificial
intelligence can simulate the information process of human consciousness
and thinking.

Artificial intelligence is not human intelligence, but it can be like
human thinking, and it may exceed human intelligence. Artificial general
intelligence is also referred to as ‚strong AI‛, ‚full AI‛ or as the ability
of a machine to perform ‚general intelligent action‛.

Academic sources reserve ‚strong AI‛ to refer to machines capable

of experiencing consciousness.

REVOLUTION OF AI IN 2020! IS IT REAL?

Well, if you like reading technology news, you may have come across
various facts and stats about the revolutionizing technology: Artificial
Intelligence.

Some of the facts are like:

• By the year 2025, the global market of AI is expected to be
approximately $60 billion; in the year 2016 it was $1.4 billion.

22 Artificial Intelligence : Making a System Intelligent

• The global GDP of countries will grow by $15.7 trillion by the year

2030 thanks to AI revolution.

• AI based software can increase the productivity of business by

almost 40%.

• Startups based on AI grew almost 14 times over the last two decades.

• Investment in the AI startups and businesses grew 6 times since

2000.

• Already approximately 77% of the devices that we use feature AI

in one form or another.

• According to Google analysts, it is believed that by the year 2020,
robots will be smart enough to mimic the complex behavior of
human like flirting and jokes.

With these stats, facts and quotes, it is quite evident that artificial
intelligence will definitely be a big thing in the near future. In fact, the
mania of AI is that 41 percent of consumers are expecting that their life
will sooner or later be changed with AI. Just like these stats, there have
been various predictions about the Artificial intelligence future but have
you ever wondered from where the concept of AI started,

But before analyzing that let’s know the exact meaning of

artificial intelligence

Artificial intelligence means to impart the abilities of human brains
to the computer-based software. The AI-based web or mobile applications
are able to perform the actual functions which were earlier restricted to
humans. The logical & cognitive thinking are now seamlessly performed
by this latest technology.

There is no doubt that artificial intelligence along with machine learning
and deep learning has revolutionized the working of software. They have
become more supportive, interactive and humanly in their performance
and preciseness.

Almost six decades ago, various technology enthusiasts started
exploring this marvelous technology. Although its concept was in existence
from the past few centuries since the 1950s there has been no hindrance
in its evolution.

Evolution of Artificial Intelligence: Timeline

1. Alan Turing developed a test to determine whether a machine can

have human intelligent behavior or not.

Introduction 23

2. A computer scientist from America, John McCarthy coined the term

Artificial Intelligence in 1955.

3. In 1961, First Robot was introduced at general motors.

4. In 1965, MIT AI laboratory-created Eliza, the first chatbot on Natural
Language Processing (NLP)

5. Garry Kasparov, the chess world champion was defeated in 1997

by a chess-playing computer called IBM’s Deep Blue.
6. In 1999, MIT AI laboratory-developed Kismet, the first emotional

AI demo.

7. The development of self-driving cars was started by Google in 2009.

8. 2011 saw a lot in AI. Jeopardy champions were defeated by IBM

Watson. Cortana, Google Now and Siri became popular.

9. World champion Lee Sedol was defeated in Go (an ancient Chinese

board game) by Google DeepMind’s AlphaGo in 2016.

10. 2017- the year when skin cancer and heart rhythms were diagnosed
by medical breakthroughs with AI.

AI evolution of AI in the past 70 years is really revolutionary. From
the 1950s to the present, Artificial intelligence along with its subsets, deep
learning and machine learning have reached every industry with the
crucial contribution of companies, computer scientists and software
developers.

The position of artificial intelligence at present

At present, artificial intelligence is one of the key areas where various
software development companies in India & rest of the world are willing
to invest.

Neglecting this technology— at the present times— can bring
repercussions for your business. Have you ever wondered, total how
many companies have no or unclear plans to use AI? Only 22 percent! This
statistics was found in a review study by MIT Sloan Management and
Boston Consulting group.

This technology is seen as a strategically important service which has
to be added in the offerings of businesses of every field, from tourism to
healthcare.

There are a number of AI tech that is ruling the software development
world. You can incorporate them into your business to reap the benefits
of artificial intelligence.

24 Artificial Intelligence : Making a System Intelligent

AI technologies

Biometrics

Maximum security has been a major concern in human civilizations
from the times they have been established. Different ways have been
evolved over centuries to provide maximum security and AI is contributing
to the same. Do you have any idea how artificial intelligence is helpful
to this world for increasing security? You all can connect with the face
recognition and fingerprint unlocking option in your mobile phones. This
is one of the best examples of the impact of Artificial Intelligence on
human lifestyle.

As per an international digital security company, Gemalto, Biometrics
is the most obvious means of authenticating and identifying individuals
in the year 2019.‛ It is not fixed to the recognition of image & speech. At
present, visual biometric devices can recognize iris, finger, retina and face.
These AI based devices are used to effectively authenticate the person
when an authorized entry is allowed.

MACHINE LEARNING

Machine learning popularity as a means to achieve artificial intelligence
is on the rise. This is the subset of AI and allows the machines to learn
but it doesn’t require any software programmer to stuff them with the
codes!

Machine learning basically works on algorithms based on statistical
calculations and methods. Some of the best Machine learning packages
which are used extensively in the year 2019 are IBM’s SPSS, Apache Spark
ML, Scikit learn and Microsoft Azure.

Various software applications and software products are being
developed on the concept of machine learning for example image
processing, dynamic web search, self-driving cars, to name a few. Google
maps which are being used to navigate a place works on the algorithms
of machine learning.

Robotic process automation

All across the world, robotics have given a great boom to the rise of
AI. Various software products have been replaced with the interactions of
human after the onset of robotic process automation. This basically involves

Introduction 25

developing robots which can provide process information and sensory

feedback.

By using of this AI technologies, you can perform various tasks such
as solving a query, performing complex calculations, logging in and logging
out. All these tasks can be done with reliability and accuracy at a faster
rate.

Nowadays, researchers believe that these services have the capabilities
of reaching out to the areas of finance, human resources, and accounting.
Many of these processes in various industries from hospitality to healthcare
has been automated with robots.

Internet of things

Internet of things or IoT is commonly used in combination with AI.
Their applications and benefits are defining the trends of software industry.
One of the most popular examples is automated vacuum cleaners which
came into existence in 2002.

However, it is not broadly recognized as other AI applications. Some

other examples of integration of AI with IoT are self-driving vehicles and

smart thermostat solutions.

Also, it is expected that in future, these technologies will be used in

combination for emotional analysis, security devices, and face recognition.

This combination can easily be explained in a nutshell as a computer

program communicating with the device. You can also assume AI to be
the brain of the body (IoT).

Neural networks

The human brain works with neurons that are connected in a complex
manner. In the same way, a kind of programming is being developed that
makes machines to work on the neural networks. It is known as Artificial
Neural Network (ANN) programming and developed under the deep
learning technology. Machine learning is the parent technology of deep
learning which is succeeded with the AI.

Artificial neural networks first came into application in the year 1989.
Some representatives from Carnegie Mellon University were the first
people to develop an autonomous vehicle by using neural networks. In
addition to this, as the science has evolved over the years, right now we
are more concerned about how our brain actually works rather than
concentrating on stimulating the brain. Actually, it is improving our

26 Artificial Intelligence : Making a System Intelligent

knowledge about ourselves as well as bringing progress in neuroscience

with the developments in AI or artificial intelligence.

GENERAL ARTIFICIAL INTELLIGENCE

Before reaching superintelligence, general AI means that a machine
will have the same cognitive capabilities as a human being. Again,
researchers argue about the point in time when we will reach general AI.
It could be around the year 2045. Due to the law of accelerating returns,
the phase of general Artificial Intelligence will very soon after transition
into the era of superintelligence.

Intelligence is highly related to the ability of an organism to effectively
adapt itself to better cope with a changing environment. Adaption also
means not only changing oneself but also changing the environment. Here
are the key characteristics of general artificial (and human) intelligence
(sources: here and here):

• Learning: The ability to alter one’s behaviour based on past
experiences, e.g. when encountering new and unseen situations.

• Memory: The encoding, storage and retrieval of past experiences.

• Reasoning and abstraction: Draw logical conclusions and have the

ability to generalize / derive rules based on sample data.

• Problem solving: The ability to systematically come up with possible

solutions and derive the best answer to a problem.

• Divergent thinking: The ability to generate multiple solutions to a
given problem.

• Convergent thinking: Narrow down a list of multiple options in

order to derive the best possible answer.

• Emotional intelligence: Recognise and interpret human emotions.

• Speed: All characteristics mentioned above must happen in a
reasonable time frame / near real time. Also they cannot rely on
massive amounts of data, e.g. to retrain a neural network. In some
cases, learning can be based on one single example only.

General-purpose AI will not be reached with the current approach
and tools like neural networks. In order to achieve true intelligence,
cognitive systems might be a solution.

Narrow Artificial Intelligence

Since researches did not make much progress on achieving general

Introduction 27

AI, the focus naturally shifted towards narrow AI first. Narrow AI focuses
on very specific use cases. This means that an AI (currently deep neural
network are mostly used) is trained for a very specific purpose. Therefore
the AI can only handle events that it has been trained on.

If a chatbot is trained to answer customer service requests in English
for company A, it will not be able to react to any requests that it will a)
receive for a different company or b) are stated in a different language or

c) be asked for non related topics like ‚Do I need to take an umbrella to
work today?‛.

In contrast to general AI, narrow AI’s capability to learn is very limited.
It can learn within the boundaries of the particular use case, e.g. a narrow
AI for speech recognition might be able to improve the rate of understanding
new dialects of the same language it has been trained on.

In order to learn another language, it needs input from humans, e.g.
by providing large amounts of labeled data sets for the new language to
be learned.

Narrow AI cannot dynamically adapt to new situations by coming up

with alternative solutions, a key trait of general artificial intelligence.

Some typical narrow AI use cases:

• Natural language recognition and processing

• Autonomous driving

• Visual image recognition and interpretation

• Intrusion detection in cyber security

• Human activity recognition

TOOLS AND METHODS IN MACHINE LEARNING

Machine learning is an AI discipline and the key driver behind the
advances of narrow Artificial Intelligence in recent years. It is a collection
of tools and methods which allow computers to learn from observations,
data and examples in order to improve their performance. It does not
require explicit step by step explanation on how to execute a task as it
would be necessary with traditional programming.

In essence, machine learning is based on statistical models in order
to conduct predictions. During the learning process, the parameters of the
statistical model are optimally adapted according to the provided training
data. One can say, that the system learns by experience. Based on the given
training data, the system is then able to make predictions for unseen

28 Artificial Intelligence : Making a System Intelligent

events / data. In order for a model to generalize well for those unseen
events, it is important to define a model well suited for the problem
statement and to have training data available in the necessary quantity and
quality.

Supervised Machine Learning

Supervised machine learning simply means that we provide an
algorithm with fully labeled training data.

Labeled training data means that every training record also has the
associated answer attached to it. Therefore we already provide clear
guidance to the algorithm on how to interpret the data. The algorithm
will then construct a model and test it against the given labels. For each
iteration, an error function will validate, if the prediction that the model
came up with is in alignment with the label. The model will then be
adjusted slightly with each iteration until the model performs well on
the training data.

There are two different types of supervised learning. The key thing
to remember: Classification separates the data, regression fits the data.

• Classification: Algorithm that predicts the categorical response value
for a given observation / input. It will predict a discrete value. A
prerequisite is that we are able to segment the response values into
distinct classes. A typical example is the classification of handwritten
letters and numbers, e.g. used by the postal office to interpret an
address written on a letter.

• Regression: Algorithm that predicts a numerical continuous response

value for a given observation / input. It will predict a continuous

Introduction 29

value. A typical example is the prediction of house prices based on

their location, size, age, etc.

Unsupervised Machine Learning

In cases where it is difficult or too expensive to obtain enough labeled
training data, unsupervised methods become relevant. With unsupervised
learning, we do not provide the algorithm with labeled training data.
Instead we want the algorithm to find a way on its own how to classify

/ separate the data. The following key categories exist:

• Clustering: Algorithm that tries to create clusters of similar data
points. For example, one can image that a machine will definitely
be able to classify vehicles on its own when the algorithm receives
only the front view of millions of cars. A BMW looks different
compared to Ford or Audi therefore the algorithm should easily
be able to cluster the pictures into different categories (in this case
car brands).

• Anomaly Detection: Algorithm that tries to find outliers / anomalies
within a given data set. A typical example is the identification of
fraudulent behavior in bank transactions. If a person has many
transactions while travelling between Europe and the US with
relatively small amounts, a USD 10,000 transaction from Nigeria in
between might be suspicious.

• Association: Association rules is an algorithm that identifies
relationships and dependencies within data sets. A typical example
would be a recommender engine of an online store where correlated
products can be grouped together based on similar features and
then suggested to the consumer.

30 Artificial Intelligence : Making a System Intelligent

Semi Supervised Machine Learning

In cases where labeling of massive amounts of training data is too
expensive, a mix between supervised and supervised machine learning
comes into play.

The process starts off with a person labeling a small amount of data
(example: CT scans which are interpreted and labeled by an expert
radiologist). Currently, the most popular example of semi supervised
learning is a a special kind of neural network called GAN (general
adversarial network).

Introduction 31

It is using labeled training data to generate new data (via the generator
network) and then sends this data to another neural network (discriminator)
which needs to identify if the data is fake or part of the training data. The
generator and discriminator networks jointly improve in a positive feedback
loop.

The generator will get better at creating convincing fake data and the
discriminator is getting better at separating fake data from training data.
A great use case for a GAN is the creation of artificial images that should
mimic real images. A GAN generated portrait was recently sold at Christie’s
for a ridiculously high amount.

Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning where an
agent learns to make decisions by interacting with an environment to
achieve a specific goal. Unlike supervised learning, where the model is
trained on a fixed dataset, RL involves learning through trial and error,
receiving feedback in the form of rewards or punishments. This approach
is inspired by behavioral psychology and is particularly useful for solving
complex problems that require sequential decision-making.

32 Artificial Intelligence : Making a System Intelligent

Reinforcement learning is based on the assumption that an optimal
behavior or action can be enforced by positive rewards that are given for
a favorable action. The basic setup for reinforcement learning comprises
an agent which will interact with its environment. Based on the positive

/ negative feedback the agent receives from its interactions at a given
situation, a certain behavior is rewarded and favorable actions are therefore
reinforced.

Within many iterations, the agent will be trained and the
performance of its actions to achieve the overall goal are improved.

For each action, the agent must decide whether he wants to explore
his environment (exploration) in order to search for potentially higher
rewards (also the risk of failing is higher) compared to the actions that
have already proven to be successful (exploitation).

Artificial Intelligence Systems in Computer Projects 33

Artificial Intelligence Systems in
Computer Projects

AI – CURRENT STATUS OF TECHNOLOGY

AI – A Maturing Technology- A general definition of AI is the capability
of a computer system to perform tasks that normally require human
intelligence, such as visual perception, speech recognition and decision-
making. Functionally, AI enabled machines should have the capability to
learn, reason, judge, predict, infer and initiate action. In layman’s terms,
AI implies trying to emulate the brain. There are three main ingredients
that are necessary for simulating intelligence: the brain, the body, and the
mind. The brain consists of the software algorithms which work on available
data, the body is the hardware and the mind is the computing power that
runs the algorithms. Technological breakthroughs and convergence in
these areas is enabling the AI field to rapidly mature.

AI, Machine Learning and Deep Learning – Year before last, in a
significant development, Google Deepmind’s AlphaGo program defeated
South Korean Master Lee Se-dol in the popular board game Go, and the
terms AI, Machine Learning, and Deep Learning were used to describe
how DeepMind won. The easiest way to think of their inter-relationship
is to visualise them as concentric circles, with AI the largest, then Machine
Learning, and finally Deep Learning – which is driving today’s AI explosion
– fitting inside both.1 AI is any technique that enables computers to mimic
human intelligence.

Machine Learning is a subset of AI, which focuses on the development
of computer programs that can change when exposed to new data, by
searching through data to look for patterns and adjusting program actions

34 Artificial Intelligence : Making a System Intelligent

accordingly. Deep Learning is a further subset of Machine Learning that
is composed of algorithms which permit software to train itself by exposing
multi-layered neural networks (which are designed on concepts borrowed
from a study of the neurological structure of the brain) to vast amounts
of data.

AI Technologies – The most significant technologies which are making
rapid progress today are natural language processing and generation,
speech recognition, text analytics, machine learning and deep learning
platforms, decision management, biometrics and robotic process
automation.

Some of the major players in this space are: Google, now famous for
its artificial neural network based AlphaGo program; Facebook, which has
recently announced several new algorithms; IBM, known for Watson,
which is a cognitive system that leverages machine learning to derive
insights from data; Microsoft, which helps developers to build Android,
iOS and Windows apps using powerful intelligence algorithms; Toyota,
which has a major focus on automotive autonomy (driver-less cars); and
Baidu Research, the Chinese firm which brings together global research
talent to work on AI technologies.

AI – Future Prospects -. Today, while AI is most commonly cited for
image recognition, natural language processing and voice recognition, this
is just an early manifestation of its full potential. The next step will be the
ability to reason, and in fact reach a level where an AI system is functionally
indistinguishable from a human. With such a capability, AI based systems
would potentially have an infinite number of applications.

The Turing Test – In a 1951 paper, Alan Turing proposed the Turing
Test to test for artificial intelligence. It envisages two contestants consisting
of a human and a machine, with a judge, suitably screened from them,
tasked with deciding which of the two is talking to him. While there have
been two well-known computer programs claiming to have cleared the
Turing Test, the reality is that no AI system has been able to pass it since
it was introduced. Turing himself thought that by the year 2000 computer
systems would be able to pass the test with flying colours! While there
is much disagreement as to when a computer will actually pass the Turing
Test, one thing all AI scientists generally agree on is that it is very likely
to happen in our lifetime.

Fear of AI – There is a growing fear that machines with artificial

intelligence will get so smart that they will take over and end civilisation.

Artificial Intelligence Systems in Computer Projects 35

This belief is probably rooted in the fact that most of society does not have
an adequate understanding of this technology. AI is less feared in
engineering circles because there is a slightly more hands-on understanding
of the technology. There is perhaps a potential for AI to be abused in the
future, but that is a possibility with any technology. Apprehensions about
AI leading to end-of-civilisation scenarios are perhaps largely based on
fear of the unknown, and are largely unfounded.

APPROACH OF ARTIFICIAL INTELLIGENCE

Theories

In the quest to create intelligent machines, the field of Artificial
Intelligence has split into several different approaches based on the opinions
about the most promising methods and theories. These rivaling theories
have lead researchers in one of two basic approaches; bottom-up and top-
down.

Bottom-up theorists believe the best way to achieve artificial intelligence
is to build electronic replicas of the human brain’s complex network of
neurons, while the top-down approach attempts to mimic the brain’s
behaviour with computer programmes.

Parallel Computation

The human brain is made up of a web of billions of cells called
neurons, and understanding its complexities is seen as one of the last
frontiers in scientific research. It is the aim of AI researchers who prefer
this bottom-up approach to construct electronic circuits that act as neurons
do in the human brain. Although much of the working of the brain remains
unknown, the complex network of neurons is what gives humans intelligent
characteristics. By itself, a neuron is not intelligent, but when grouped
together, neurons are able to pass electrical signals through networks. The
neuron ‚firing‛, passing a signal to the next in the chain.

Research has shown that a signal received by a neuron travels through
the dendrite region, and down the axon. Separating nerve cells is a gap
called the synapse. In order for the signal to be transferred to the next
neuron, the signal must be converted from electrical to chemical energy.
The signal can then be received by the next neuron and processed. Based
on experiments with neurons, McCulloch and Pitts showed that neurons
might be considered devices for processing binary numbers.

36 Artificial Intelligence : Making a System Intelligent

An important back of mathematic logic, binary numbers (represented
as 1’s and 0’s or true and false) were also the basis of the electronic
computer. A century earlier the true/false nature of binary numbers was
theorized in 1854 by George Boole in his postulates concerning the Laws
of Thought. Boole’s principles make up what is known as Boolean algebra,
the collection of logic concerning AND, OR, NOT operands.

Boole also assumed that the human mind works according to these
laws, it performs logical operations that could be reasoned. Ninety years
later, Claude Shannon applied Boole’s principles in circuits, the blueprint
for electronic computers. Boole’s contribution to the future of computing
and Artificial Intelligence was immeasurable, and his logic is the basis of
neural networks.

McCulloch and Pitts, using Boole’s principles, wrote a paper on neural
network theory. The thesis dealt with how the networks of connected
neurons could perform logical operations. It also stated that, one the level
of a single neuron, the release or failure to release an impulse was the basis
by which the brain makes true/false decisions. Using the idea of feedback
theory, they described the loop which existed between the senses —> brain

—> muscles, and likewise concluded that Memory could be defined as the
signals in a closed loop of neurons. Although we now know that logic in
the brain occurs at a level higher then McCulloch and Pitts theorized, their
contributions were important to AI because they showed how the firing
of signals between connected neurons could cause the brains to make
decisions. McCulloch and Pitt’s theory is the basis of the artificial neural
network theory.

Using this theory, McCulloch and Pitts then designed electronic replicas
of neural networks, to show how electronic networks could generate
logical processes. They also stated that neural networks may, in the future,
be able to learn, and recognize patterns. The results of their research and
two of Weiner’s books served to increase enthusiasm, and laboratories of
computer simulated neurons were set up across the country.

Two major factors have inhibited the development of full scale neural
networks. Because of the expense of constructing a machine to simulate
neurons, it was expensive even to construct neural networks with the
number of neurons in an ant. Although the cost of components have
decreased, the computer would have to grow thousands of times larger
to be on the scale of the human brain. The second factor is current computer
architecture. The standard Von Neuman computer, the architecture of

Artificial Intelligence Systems in Computer Projects 37

nearly all computers, lacks an adequate number of pathways between
components. Researchers are now developing alternate architectures for
use with neural networks.

Even with these inhibiting factors, artificial neural networks have
presented some impressive results. Frank Rosenblatt, experimenting with
computer simulated networks, was able to create a machine that could
mimic the human thinking process, and recognize letters. But, with new
top-down methods becoming popular, parallel computing was put on
hold. Now neural networks are making a return, and some researchers
believe that with new computer architectures, parallel computing and the
bottom-up theory will be a driving factor in creating artificial intelligence.

Expert Systems

Because of the large storage capacity of computers, expert systems
had the potential to interpret statistics, in order to formulate rules. An
expert system works much like a detective solves a mystery. Using the
information, and logic or rules, an expert system can solve the problem.

Games

On game with strong AI ties is chess. World-champion chess playing
programmes can see ahead twenty plus moves in advance for each move
they make. In addition, the programmes have an ability to get progress
ably better over time because of the ability to learn.

Chess programmes do not play chess as humans do. In three minutes,
Deep Thought (a master programme) considers 126 million moves, while
human chess master on average considers less than 2 moves. Herbert
Simon suggested that human chess masters are familiar with Favourable
board positions, and the relationship with thousands of pieces in small
areas. Computers on the other hand, do not take hunches into account.
The next move comes from exhaustive searches into all moves, and the
consequences of the moves based on prior learning. Chess programmes,
running on Cray super computers have attained a rating of senior master,
in the range of Gary Kasparov, the Russian world champion.

Frames

On method that many programmes use to represent knowledge are
frames. Pioneered by Marvin Minsky, frame theory revolves around packets
of information. For example, say the situation was a birthday party. A

38 Artificial Intelligence : Making a System Intelligent

computer could call on its birthday frame, and use the information contained
in the frame, to apply to the situation. The computer knows that there is
usually cake and presents because of the information contained in the
knowledge frame. Frames can also overlap, or contain sub-frames.

BRANCHES OF ARTIFICIAL INTELLIGENCE

Logical

The programme decides what to do by inferring that certain actions
are appropriate for achieving its goals. The first article proposing this was
[McC59]. [McC89] is a more recent summary.lists some of the concepts involved
in logical aI. is an important text.

Search

AI programmes often examine large numbers of possibilities, e.g.
moves in a chess game or inferences by a theorem proving programme.
Discoveries are continually made about how to do this more efficiently
in various domains.When a programme makes observations of some kind,
it is often programmed to compare what it sees with a pattern. For example,
a vision programme may try to match a pattern of eyes and a nose in a
scene in order to find a face. More complex patterns, e.g. in a natural
language text, in a chess position, or in the history of some event are also
studied.Facts about the world have to be represented in some way. Usually
languages of mathematical logic are used.

Inference

Mathematical logical deduction is adequate for some purposes, but
new methods of non-monotonic inference have been added to logic since
the 1970s. The simplest kind of non-monotonic reasoning is default
reasoning in which a conclusion is to be inferred by default, but the
conclusion can be withdrawn if there is evidence to the contrary.

For example, when we hear of a bird, we man infer that it can fly, but
this conclusion can be reversed when we hear that it is a penguin. It is
the possibility that a conclusion may have to be withdrawn that constitutes
the non-monotonic character of the reasoning. Ordinary logical reasoning
is monotonic in that the set of conclusions that can the drawn from a set
of premises is a monotonic increasing function of the premises.
Circumscription is another form of non-monotonic reasoning.

Artificial Intelligence Systems in Computer Projects 39

Knowledge and Reasoning

This is the area in which AI is farthest from human-level, in spite
of the fact that it has been an active research area since the 1950s. While
there has been considerable progress, e.g. in developing systems of non-

monotonic reasoning and theories of action, yet more new ideas are needed.
The Cyc system contains a large but spotty collection of common sense
facts.

The approaches to AI based on connectionism and neural nets specialize
in that. There is also learning of laws expressed in logic. [Mit97] is a
comprehensive undergraduate text on machine learning. Programmes can
only learn what facts or behaviours their formalisms can represent, and
unfortunately learning systems are almost all based on very limited abilities
to represent information.

Planning programmes start with general facts about the world
(especially facts about the effects of actions), facts about the particular
situation and a statement of a goal. From these, they generate a strategy
for achieving the goal. In the most common cases, the strategy is just a
sequence of actions.

Ontology

Ontology is the study of the kinds of things that exist. In AI, the
programmes and sentences deal with various kinds of objects, and we
study what these kinds are and what their basic properties are. Emphasis
on ontology begins in the 1990s.

Heuristics

A heuristic is a way of trying to discover something or an idea imbedded
in a programme. The term is used variously in AI. Heuristic functions are
used in some approaches to search to measure how far a node in a search
tree seems to be from a goal. Heuristic predicates that compare two nodes
in a search tree to see if one is better than the other, i.e. constitutes an
advance towards the goal, may be more useful..

Genetic Programming

Genetic programming is a technique for getting programmes to solve
a task by mating random Lisp programmes and selecting fittest in millions
of generations.

40 Artificial Intelligence : Making a System Intelligent

OUTLINE AND HISTORY IN ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) is the name that has been given to the field
of computer science devoted to making machines do things that would
require intelligence if done by humans (to paraphrase Minsky). Some are
even ambitious enough to say that the goal of AI is to create minds in
machines. But it has proven exceedingly difficult to even define words like
‚intelligence‛ and ‚mind‛, much less achieve computer implementation.
The results of the 40-year history of AI have dampened the spirits of
legions of would-be enthusiasts. The most ‚glamorous‛ contemporary
computer applications are GUI or Java programmes, not AI. Artificial
Intelligence has been divided into those concerned with processing of
symbolic information and those concerned with Neural Networks. But the
Symbolic AI camp has made every effort to exclude Neural Networks from
the definition of AI, and the field of ‚Connectionism‛ is increasingly
regarded as a somewhat independent discipline. Marvin Minsky has said
that Neural Networks are ‚too stupid‛ to be considered Artificial
Intelligence. Symbolic AI itself is divided into two subgroups, one primarily
concerned with logic, and the other concerned with heuristics (‚rule-of-
thumb‛ methods).

Artificial Intelligence as a field dates from the summer of 1956 when
a conference on the subject was organized by John McCarthy at Dartmouth
College in New Hampshire. In attendance were the four ‚founding fathers‛
of AI: John McCarthy, Marvin Minsky, Herbert Simon and Allen Newell.
Herbert Simon was a political scientist who was interested in the way
decisions are made in bureaucracies. He found that ‚management manuals‛
are often used by organizations to provide solutions to problems — and
he became interested in the compilation and application of the problem-
solving procedures of these manuals — a ‚heuristic‛ approach.

Simon teamed-up with mathematician Allen Newell to create the
world’s first AI programme: ‚Logic Theorist‛. Combining logic with ‚search
tree‛ heuristics, Logic Theorist proved 38 of the first 52 theorems of Russell
and Whitehead’s Principal Mathematica. The proof for one of these theorems
was even more elegant that the one given in Principal. At the Dartmouth
conference, Simon and Newell distinguished themselves by being the only
participants who already had a working AI programme.

John McCarthy induced the conference participants to support the
term ‚Artificial Intelligence‛ to describe their discipline. Discussion centered
on the idea that intelligence is based on internal representations of

Artificial Intelligence Systems in Computer Projects 41

information, corresponding symbols, and the processing of information
and symbols. In this view, intelligence transcends any specific hardware
(or ‚wetware‛, as brains are often called).

McCarthy believed that the key to AI was being ‚able to write out the
rules that would let a computer think the way we do‛. He was one of the
foremost proponents of the ‚logic‛ school, and he attempted to implement
machine intelligence through predicate calculus. McCarthy is also the
creator of LISP (LISt Processing) language, the most widely-used computer
language in AI research in North America. LISP is intended to reproduce
what is regarded as the associative features of thought. LISP is based on
Alonzo Church’s ‚Lambda Calculus‛, which can apply functions to
functions as readily as it can apply functions to numbers or characters.
LISP programming is notoriously recursive (ie, using functions that call
themselves).

Marvin Minsky is probably the most famous of the four ‚founding
fathers‛ of AI. He is particularly well-known among cryonicists because
he sponsored Eric Drexler’s PhD thesis and wrote the forward to Engines

of Creation. Minsky cofounded the MIT AI Lab with McCarthy in 1958.
McCarthy left in 1962 to start AI research at Stanford, leaving Minsky to
‚rule the roost‛ in AI at MIT for many, many years.

In the early days of computing science there were, on the one side,
a small group of enthusiasts with unbounded visions of what computers
could do. To many, the automating of all mental activities — and ultimately
the automation of mind — seemed only a few years away. On the other
side was the general public, who (in pre-PC times) had a gross ignorance
and no small amount of fear about the capabilities of computers. Managers,
professionals and others feared for their jobs. IBM researchers were
developing programmes which could play chess, play checkers and prove
geometry theorems, but the effect of this work on marketing was not seen
to be favourable.

IBM dropped its game-playing and theorem-proving research and
adopted the posture that computers can not steal jobs because they are
only moronic devices for number-crunching, data-manipulation and word-
processing. IBM’s pragmatic marketing position has proven prophetic in
light of widespread PC use and what many people believe to be forty years
of failed attempts to achieve Artificial Intelligence.

Several attempt have been made to create programme ‚agents‛ in
‚Micro Worlds‛, where simple language could be applied to a limited field

42 Artificial Intelligence : Making a System Intelligent

of discourse. One of the most ambitious of such projects was a system by
Terry Winograd that represented a robot named SHRDLU. The robot
would manipulate coloured blocks and pyramids in response to English-
like commands, and could give simple explanations when quizzed about
its actions (like how to build a steeple). The programme consisted of many
fragments that acted as independent agents. This approach is more
‚heuristic‛ than logical, and it typifies Minsky’s approach to AI.

In theory, a ‚Micro World‛ could be expanded continuously until the
robot’s ‚universe of discourse‛ overlapped the human universe of discourse

— and the robot was a genuinely sentient being. In practice, scaling-up

a ‚Micro World‛ has proven exceedingly difficult.

Minsky directed such a project at MIT which got bigger and bigger
until there were so many programmes which had been written by so many
people — and the system was so large — that no one understood it. It was
abandoned in 1971. Later, Minsky wrote The Society Of Mind in which he
attempted to decompose the human mind into a ‚society‛ of independent
‚agents‛, none of which could be called intelligent. Minsky’s thesis is that
this is the way that real minds work — and it is the way that machine
minds will be built.

In the early 1970s the language PROLOG (PROgramming in LOGic)
became the favoured AI language outside the United States (LISP was too
firmly established in the US). PROLOG is a ‚higher-level‛ language that
allows the programmer to specify what is to be done, rather than how, due
to PROLOG’s mechanisms for manipulating logical statements.

The late 1970s and early 1980s witnessed a huge surge in corporate
interest and capital into the area of AI known as ‚expert systems‛. These
systems consist of a knowledge base of ‚if-then‛ rules, accumulated from
human experts. A car diagnosis system, for example, might contain the
rule ‚If the engine won’t turn-over, thencheck the battery strength‛. And
‚If the engine won’t turn-over and the battery strength is high, then check
the spark plugs‛. Expert systems incorporated the value of knowledge as
well as logic in problem-solving, and had the promise of being as useful
as human experts.

The first expert system was DENDRAL, a system for narrowing-down
the possible chemical structure of a compound based on formula, spectral
information and the encoded wisdom of chemists. DENDRAL proved its

success by deducing the structure of Di-n-decyl C20H22 from 11 million

possible combinations.

Artificial Intelligence Systems in Computer Projects 43

But as the system accumulated more knowledge it became too difficult
to expand and maintain. MYCIN was a better-designed expert system that
more cleanly separated the rules (knowledge-base) from the logic used to
apply the rules. MYCIN diagnosed infectious blood diseases on the basis
of blood tests, bacterial cultures and other information. Other expert systems
were developed which proved to be of benefit for certain specialized
applications.

But knowledge-engineering — transferring human expert knowledge
to expert computer systems — proved to be far more difficult than anyone
anticipated. The systems required continual revision to avoid obsolescence.
And too often they made gross mistakes that no one with ‚common sense‛
would make. The expert system ‚boom‛ was followed by an expert system
‚bust‛.

Computer systems designed to translate from one human language
to another have proven exceedingly difficult to build, for the same reason
that computer systems built to understand human language have
foundered. Word meanings are context-dependent. The phrase ‚That is a
big drop‛ has a different meaning in an optometrist’s office than it has on
the edge of a cliff.

A sentence like ‚Still waters run deep‛ is even more challenging, not simply

because it is metaphorical, but because every word in the sentence can:

• Have multiple meanings and

• Be used in more than one part-of-speech. Semantics governs syntax,
which can make parsing sentences unfathomable for computer
programmes.

Based on the assumption that common-sense understanding necessarily
must be built upon a large knowledge-base, Doug Lenat has begun a $25
million project to create a computer-system with an enormous amounts
of knowledge. Cyc (short for encyclopedia) collects knowledge in ‚frames‛
(collections of facts and rules) in a feeding process that is expected to take
two person-centuries, and include 100 million frames.

Cyc is capable of ‚meditating‛ on its knowledge, searching for
analogies. Lenat claims that Cyc will eventually be able to educate itself
(by reading and having discussions with ‚tutors‛) rather than having to
be ‚spoon fed‛ its knowledge. But McCarthy thinks Cyc has inadequate
logic, and Minsky doesn’t think Cyc has a wide-enough variety of
procedures to do much with its information. The Artificial Life community
has expanded on the ‚Micro World‛ concept by creating Micro Worlds in

44 Artificial Intelligence : Making a System Intelligent

which the artificial creatures experience ‚pleasure and pain‛, have needs
and must adapt. In these ‚Micro Worlds‛ there is not only a universe of
discourse, but a universe of values (motives, ‚feelings‛). In S.W. Wilson’s
Animat system, the creatures adapt by learning what rules ‚work‛ and
what rules don’t. Genetic algorithms provide a basis for ‚learning‛.

AI ‚founding father‛ Allen Newell has designed the SOAR system,
a collection of psychological mechanisms based on his book Unified Theories

Of Cognition. SOAR uses representations and ends-means analysis for
problem-solving. A ‚problem‛ is, by definition, a discrepancy between an
existing condition and a goal condition. As with the Artificial Life systems,
SOAR presumes that an intelligent system must be ‚motivated‛ by goal-
states — and the sophisticated heuristic search strategies of ends-means
analysis are used to achieve those states. ‚Learning‛ occurs in the process.

ARTIFICIAL INTELLIGENCE AND HUMAN MINDS

In 1950 Alan Turing wrote an article for the journal MIND in which
he suggested a test wherein an interrogator would submit teletyped
questions to both a machine and a person — and receive teletyped answers
from both. Turing claimed that if the interrogator could not correctly
distinguish between the person and the machine, the machine deserved
to be called intelligent. Turing believed that by the year 2000, the average
interrogator would be unable to determine the human more than 70% of
the time in less than 5 minutes. Despite the flaws in Turing’s approach,
the ‚Turing Test‛ became a focal point of discussions about machine
intelligence. It avoids the necessity of definingintelligence, and relies on
appearances to an ‚average‛ interrogator — under a time limit. And it
places a great emphasis on a machine being able to resemble a human.
In a conscious effort to expose the irrelevance of deceptive appearances,
Joseph Weizenbaum wrote a programme in the mid-1960s called ELIZA,
which simulates a nondirective psychotherapist. If a user would type-in
‚My mother is afraid of cats‛, the programme might respond with the
phrase ‚Tell me more about your family‛. To the phrase ‚He works with
computers‛ it might respond ‚Do machines frighten you?‛.

If the user entered a sentence that triggered no pre-defined answer,
it might respond with ‚Go on‛ or ‚Earlier you talked of your mother‛.
Ironically, Weizenbaum made every effort to make ELIZA convincing, but
was irritated to learn that there were people who seriously interacted with
ELIZA by confiding their problems. Weizenbaum believed that human

Artificial Intelligence Systems in Computer Projects 45

intuition and wisdom are not ‚machinable‛, and he even objected to the
goals of AI on moral grounds.

In 1980 philosopher John Searle wrote a paper describing a thought
experiment of a person passing the Turing Test in Chinese. In this scenario,
an English-speaking person who is ignorant of Chinese would sit in a
room in which he/she would receive messages written in Chinese. Detailed
scripts would describe what responses to provide. Even though the person
in the ‚Chinese Room‛ might convince the Chinese interrogator that
someone in the room understood Chinese, all that occurred in reality was
symbol manipulation. Searle claimed that this is all computers ever do or
can do — manipulate symbols without any real understanding of what
those symbols mean.

Searle believes that computers will eventually be able to perform
every intellectual feat of which humans are capable — and pass every
Turing Test with ease — yet still be lacking in subjective consciousness.
He believes that 2 different ‚systems‛, one conscious and the other
unconscious, could produce identical behaviour. Searle’s position has been
called weak AI, and it is contrasted with strong AI: the idea that intelligent
machines will eventually possess consciousness, self-awareness and
emotion. (Roger Penrose denies the possibility of both strong AI and weak
AI.) Searle characterizes the ‚strong AI‛ position as believing that ‚the
mind‛ is ‚just a computer programme‛. Others have characterized the
difference between ‚weak AI‛ and ‚strong AI‛ as the difference between
a ‚third-person‛ approach to consciousness and a ‚first-person‛ approach.

Before computers, many people undoubtedly believed that arithmetic
operations or the symbolic manipulations of integral calculus required
intelligence. Some people still worry about the fact that computer chess-
playing machines may soon be able to defeat all human opponents. But
the limitations on this capability are nothing more than those of hardware
to exhaustively search the consequences of millions of board positions in
a short time. Is the ability of a computer to defeat any human opponent
at chess any more a sign of intelligence than the ability to calculate the
square root of 2 to hundreds of decimal places in less than a millisecond?

The Church-Turing Thesis essentially asserts that any algorithm can
be implemented on a computer. If we can introspectively reduce any
intellectual feat to a step-by-step procedure (an algorithm), then a computer
can implement it. Yet computers have had the most difficulty with things
that humans do without conscious thought, such as recognizing faces.

46 Artificial Intelligence : Making a System Intelligent

Much problem-solving actually involves pattern-recognition — intuitive
associations of problems with similar problems. The difficulty of experts
to reduce this ability to algorithms has been one of the obstacles to
implementing expert systems. Yet neural networks may eventually be
capable of handling some of these tasks.

Much of what passes for creativity is simply pseudo-random
association. Douglas Hofstadter wrote a programme that uses Recursive
Transition Network grammar and words randomly selected from word-
categories to produce surrealistic prose: ‚A male pencil who must laugh
clumsily would quack‛. My programme produces phrases like: ‚Your eye
intrigues upon delight‛ (my word-lists are different). A careful analysis
of so-called creative thought often reveals procedures like ‚find extreme
examples‛ or ‚invert the situation‛. The presumption that computers ‚can
only do what you tell them to do‛ seems contradicted by the fact that
game-playing programmes frequently can defeat their creators.

Deciding whether a computer programme possesses intelligence
should require a clear definition of the term ‚intelligence‛ and a means
to measure it. An intelligent system should be able to form internal
representations of the external world, be able to learn and be able to reason
(‚think‛) about the world and itself.

So-called ‚IQ tests‛ exist for human beings, but people are reluctant
to apply the same standards to machines. Descriptions of what people
would call intelligence might include ‚common sense‛ plus a general
ability to analyse situations and to solve problems.

Often humans are called intelligent even though their abilities exist
in specialized areas — and they are not seen as having ‚common sense‛.
But the same allowances are not made for computers. Within humanity
there is a vast range of intellectual abilities between infants and adults —
or between the genius and the mentally-retarded or brain-damaged. I
suspect that even so-called ‚third-person‛ criteria for intelligence covertly
demand signs of subjective consciousness.

What are the signs of consciousness? Searle argued that his Chinese
Room example demonstrated that it is possible to effectively manipulate
symbols without understanding their meaning. Do awareness,
understanding and meaningfulness require subjective consciousness? Does
a spider know how a web is created? Does a beaver consciously build a
dam? A frog may be aware of its surroundings, but is it conscious or
intelligent? Self-awareness in the presence of a mirror has been

Artificial Intelligence Systems in Computer Projects 47

demonstrated by chimpanzees, but not by baboons. Yet other animals may
possess some form of self-awareness insofar as carnivores do not attempt
to eat themselves (although this may be just a response to pain).

Using self-awareness as a criterion for intelligence may not be more
defensible than ‚common sense‛. Minsky has defined self-awareness as
the ability to monitor one’s own processes. He believes that computers
could easily monitor their own processes and explain their actions more
effectively than human beings.

Pattern-recognition, purpose and emotion are said to be attributes of
intelligence or consciousness which cannot be reduced to algorithms.
Nonetheless, neural networks can achieve pattern recognition. And
computers can have a purpose or goal — to win a game of chess, for
example.

It might be objected that the goals of computers are only those that
have been programmed — but are not the goals of humans and animals
those which have been programmed into their genes (pleasures, pains,
fears, etc.)?

Certain people with neurological deficits have been incapable of feeling
pain. Must this reduce their consciousness or intelligence? And what is
emotion? Hans Moravec says that emotions are just drives for channeling
behaviour — they focus energy around goals. He imagines robots that
would get a ‚thrill‛ out of pleasing their owners — and exhibit ‚love‛.

The robots could become upset when their batteries run low and
would plead with their owners (or express anger) for a recharge. Does
emotion require biological organs? Are other forms of feeling possible
with other hardware, perhaps even silicon?

The undue emphasis on ‚humanness‛ of the Turing Test is a severe
limitation as a criterion for either intelligence or consciousness. Dolphins
have a larger cerebral cortex than human beings, and appear to communicate
with each other. If they do possess intelligence, or consciousness, it is alien
to that of a human. Aside from the fact that they don’t manipulate their
environment with tools, their perceptive apparatus and natural environment
is somewhat different:they place more emphasis on sound (echolation)
and less on vision. Bats rely on echolation even more than dolphins, and
a bat with an expanded brain would doubtless have a very different
understanding of the world from a human.

An even more extreme example would be an organism with an

expanded brain that relies primarily on taste and smell to perceive the

48 Artificial Intelligence : Making a System Intelligent

world. But the alienness of machine intelligence, consciousness and feeling
could be even more extreme. Airplanes are not built to flap their wings,
but they fly more effectively than birds.

The intelligence, consciousness and feelings of machines might be too
remote from our own experience for us to identify with them. If it is true
that a computer can only manipulate symbols without any real
understanding, how do human beings achieve understanding? Books are
full of knowledge, but are not conscious or intelligent.

Computers don’t simply manipulate information, they do so in a goal-
directed, problem-solving manner. If knowledge is used to solve problems,
isn’t that an indication of knowledge being meaningful? Symbols can only
be meaningfully manipulated if they are meaningfully representative of
something real.

Neural networks are said to recognize patterns because they give
distinctive outputs corresponding to distinctive input patterns. A computer
that does integral calculus gives a distinct solution for a distinct input
equation. Can an operational definition be given to ‚understanding‛, or
is it to be defined only relative to a subjective consciousness? What ‚magic‛
is performed by a biological brain that cannot — in theory — be performed
by a computer? Why should it be necessary to build machines from organic
materials to achieve consciousness?

Symbolic AI adherents have been harshly critical of the idea that
intelligence can ‚emerge‛ from a neural network. But the Cyc project’s
attempt to accumulate a large enough knowledge base for a computer to
acquire ‚common sense‛ seems itself like it is based on ‚emergence‛. A
dictionary in itself is meaningless to a person because all of the words are
defined in terms of other words.

A human being associates words with objects in the environment that
themselves acquire meaning through their ability to induce an emotional/
physiological response (like pleasure or pain). The meaning of a kiss
involves both the physical features of the kiss and emotional reactions
associated with who is kissing and being kissed.

Ultimately, meaning seems like another word for ‚qualia‛ — but there
is also the question of context. Words have meaning not only by virtue
of their association with objects, but by association with other words —
and some words function only to link words. Is ‚meaning‛ an emergent
phenomenon — the product of a ‚critical mass‛ of knowledge (or of
something else?)?

Artificial Intelligence Systems in Computer Projects 49

If emergence occurs, there can be degrees of meaning, both for
individual words and for the entire context of understanding. As with the
way the phenomenon of heat ‚emerges‛ from molecular motion — or a
traffic jam emerges for an increasing number of vehicles.

Marvin Minsky believes that a mind can be created only by analysing
‚mind‛ into its component parts (‚agents‛), none of which can be intelligent
themselves. To quote Minsky: ‚Unless we can explain the mind in terms
of things that have no thoughts or feelings of their own, we’ll only have
gone around in a circle.‛ But Minsky’s conception of the mind as a ‚society‛
of unintelligent agents still sounds suspiciously like an ‚emergent‛
phenomenon.

I say this to emphasize the ‚magicalness‛, although I don’t deny that
emergent phenomena exist. Connectionists seem to assume that intelligence
or consciousness will emerge from a machine that simulates brain processes
well-enough (reverse engineering), while Symbolists seem to assume that
a machine will become conscious or intelligent if it is given enough
knowledge or problem-solving capacity. If a mind cannot be created from
increasingly better simulations of mind or brain, why can’t it?

In the case of subjective conscious there seems to be the serious
problem of objective proof. The only subjective reality we can know about
directly is our own. We conclude that other people have feelings because
we can identify with their behaviour. A computer need only be a good
actor to pass the Turing Test — but then, perhaps, the same can be said
of other people. Why should it necessarily be true that all humans have
subjective consciousness?

There is simply no way to objectively prove that a machine, an animal
or even another human being has subjective consciousness. The question
is unfalsifiable and therefore does not even qualify as a scientific question.
More seriously, how could an Uploader feel confident that a change from
wetware to hardware would not involve a loss of subjective consciousness?

If it is not possible to distinguish a system having consciousness from
one that does not when the behaviour of the two systems is identical, how
could an Uploader be confident of not losing ‚self‛ in the process? A
hardware environment may appear to provide a cozy new home for the
self — but after the Uploading, all that might be left of the person would
be a simulation of the person.

Even for those who do not choose to do a full upload, there could be

increasing pressures to augment one’s intelligence with computer-chip

50 Artificial Intelligence : Making a System Intelligent

add-ons to our biological brains. Those who do not do this will be ‚left
behind‛ by those who do. Would these add-ons augment the ‚self‛, or is
there a danger of a loss of identity/subjective consciousness? Could the
testimony of others be trusted? Most seriously, how can cryonicists be sure
that reconstruction by nanotechnology — or even reconstruction from a
perfectly vitrified state — would not result in a simulation of ourselves
(or even a very close clone) rather than a reestablishment of our subjective
selves? All of our carefully-kept introspective diaries may be little more
than additional information on how to produce a more convincing
simulation.

Even if there can only be subjective verification of subjective states,
those states can only be the product of objective material and objective
processes. We are, individually (though not ‚scientifically‛), in a position
to observe both objective phenomena and subjective phenomena — and
to correlate the two. Even now we can correlate PET scans with subjective
processes. We may eventually learn to correlate our subjective experience
with the anatomical basis of mind — and this could be the key to our
survival.

ACTING HUMANLY: THE TURING TEST APPROACH

The Turing Test, proposed by Alan Turing (Turing, 1950), was designed
to provide a satisfactory operational definition of intelligence. Turing
defined intelligent behavior as the ability to achieve human-level
performance in all cognitive tasks, sufficient to fool an interrogator. Roughly
speaking, the test he proposed is that the computer should be interrogated
by a human via a teletype, and passes the test if the interrogator cannot
tell if there is a computer or a human at the other end. For now, programming
a computer to pass the test provides plenty to work on. The computer
would need to possess the following capabilities:

• natural language processing to enable it to communicate successfully
in English (or some other human language);

• knowledge representation to store information provided before or

during the interrogation;

• automated reasoning to use the stored information to answer

questions and to draw new conclusions;

• machine learning to adapt to new circumstances and to detect and

extrapolate patterns.

Artificial Intelligence Systems in Computer Projects 51

Turing’s test deliberately avoided direct physical interaction between
the interrogator and the computer, because physical simulation of a person
is unnecessary for intelligence. However, the so-called total Turing
Testincludes a video signal so that the interrogator can test the subject’s
perceptual abilities, as well as the opportunity for the interrogator to pass
physical objects ‚through the hatch.‛ To pass the total Turing Test, the
computer will need

• computer vision to perceive objects, and

• robotics to move them about.

Within AI, there has not been a big effort to try to pass the Turing
test. The issue of acting like a human comes up primarily when AI programs
have to interact with people, as when an expert system explains how it
came to its diagnosis, or a natural language processing system has a
dialogue with a user. These programs must behave according to certain
normal conventions of human interaction in order to make themselves
understood. The underlying representation and reasoning in such a system
may or may not be based on a human model.

Thinking humanly: The cognitive modelling approach

If we are going to say that a given program thinks like a human, we
must have some way of determining how humans think. We need to get
inside the actual workings of human minds. There are two ways to do this:
through introspection—trying to catch our own thoughts as they go by—
or through psychological experiments. Once we have a sufficiently precise
theory of the mind, it becomes possible to express the theory as a computer
program. If the program’s input/output and timing behavior matches human
behavior, that is evidence that some of the program’s mechanisms may
also be operating in humans.

For example, Newell and Simon, who developed GPS, the ‚General
Problem Solver‛ (Newell and Simon, 1961), were not content to have their
program correctly solve problems. They were more concerned with
comparing the trace of its reasoning steps to traces of human subjects
solving the same problems. This is in contrast to other researchers of the
same time (such as Wang (1960)), who were concerned with getting the
right answers regardless of how humans might do it. The interdisciplinary
field of cognitive science brings together computer models from AI and
experimental techniques from psychology to try to construct precise and
testable theories of the workings of the human mind. Although cognitive

52 Artificial Intelligence : Making a System Intelligent

science is a fascinating field in itself, we are not going to be discussing
it all that much in this book. We will occasionally comment on similarities
or differences between AI techniques and human cognition. Real cognitive
science, however, is necessarily based on experimental investigation of
actual humans or animals, and we assume that the reader only has access
to a computer for experimentation. We will simply note that AI and
cognitive science continue to fertilize each other, especially in the areas
of vision, natural language, and learning.

Thinking rationally: The laws of thought approach

The Greek philosopher Aristotle was one of the first to attempt to
codify ‚right thinking,‛ that is, irrefutable reasoning processes. His famous
syllogisms provided patterns for argument structures that always gave
correct conclusions given correct premises. For example, ‚Socrates is a
man; all men are mortal; therefore Socrates is mortal.‛ These laws of
thought were supposed to govern the operation of the mind, and initiated
the field of logic.

The development of formal logic in the late nineteenth and early
twentieth centuries provided a precise notation for statements about all
kinds of things in the world and the relations between them. (Contrast this
with ordinary arithmetic notation, which provides mainly for equality and
inequality statements about numbers.) By 1965, programs existed that
could, given enough time and memory, take a description of a problem
in logical notation and find the solution to the problem, if one exists. (If
there is no solution, the program might never stop looking for it.) The so-
called logicist tradition within artificial intelligence hopes to build on such
programs to create intelligent systems.

There are two main obstacles to this approach. First, it is not easy to
take informal knowledge and state it in the formal terms required by
logical notation, particularly when the knowledge is less than 100% certain.
Second, there is a big difference between being able to solve a problem
‚in principle‛ and doing so in practice. Even problems with just a few
dozen facts can exhaust the computational resources of any computer
unless it has some guidance as to which reasoning steps to try first.
Although both of these obstacles apply to any attempt to build computational
reasoning systems, they appeared first in the logicist tradition because the
power of the representation and reasoning systems are well-defined and
fairly well understood.

Artificial Intelligence Systems in Computer Projects 53

Acting rationally: The rational agent approach

Acting rationally means acting so as to achieve one’s goals, given one’s
beliefs. An agent is just something that perceives and acts. (This may be
an unusual use of the word, but you will get used to it.) In this approach,
AI is viewed as the study and construction of rational agents.

In the ‚laws of thought‛ approach to AI, the whole emphasis was on
correct inferences. Making correct inferences is sometimes part of being
a rational agent, because one way to act rationally is to reason logically
to the conclusion that a given action will achieve one’s goals, and then to
act on that conclusion. On the other hand, correct inference is not all of
rationality, because there are often situations where there is no provably
correct thing to do, yet something must still be done. There are also ways
of acting rationally that cannot be reasonably said to involve inference. For
example, pulling one’s hand off of a hot stove is a reflex action that is more
successful than a slower action taken after careful deliberation.

All the ‚cognitive skills‛ needed for the Turing Test are there to allow
rational actions. Thus, we need the ability to represent knowledge and
reason with it because this enables us to reach good decisions in a wide
variety of situations. We need to be able to generate comprehensible
sentences in natural language because saying those sentences helps us get
by in a complex society. We need learning not just for erudition, but
because having a better idea of how the world works enables us to generate
more effective strategies for dealing with it. We need visual perception not
just because seeing is fun, but in order to get a better idea of what an action
might achieve—for example, being able to see a tasty morsel helps one
to move toward it.

The study of AI as rational agent design therefore has two advantages.
First, it is more general than the ‚laws of thought‛ approach, because
correct inference is only a useful mechanism for achieving rationality, and
not a necessary one. Second, it is more amenable to scientific development
than approaches based on human behavior or human thought, because the
standard of rationality is clearly defined and completely general. Human
behavior, on the other hand, is well-adapted for one specific environment
and is the product, in part, of a complicated and largely unknown
evolutionary process that still may be far from achieving perfection. This

book will therefore concentrate on general principles of rational agents, and on

components for constructing them. We will see that despite the apparent
simplicity with which the problem can be stated, an enormous variety of

54 Artificial Intelligence : Making a System Intelligent

issues come up when we try to solve it. One important point to keep in
mind: we will see before too long that achieving perfect rationality—
always doing the right thing—is not possible in complicated environments.
The computational demands are just too high. However, for most of the
book, we will adopt the working hypothesis that understanding perfect
decision making is a good place to start. It simplifies the problem and
provides the appropriate setting for most of the foundational material in
the field.

The State of the Art

International grandmaster Arnold Denker studies the pieces on the
board in front of him. He realizes there is no hope; he must resign the
game. His opponent, Hitech, becomes the first computer program to defeat
a grandmaster in a game of chess.

‚I want to go from Boston to San Francisco,‛ the traveller says into
the microphone. ‚What date will you be travelling on?‛ is the reply. The
traveller explains she wants to go October 20th, nonstop, on the cheapest
available fare, returning on Sunday. A speech understanding program
named Pegasus handles the whole transaction, which results in a confirmed
reservation that saves the traveller $894 over the regular coach fare. Even
though the speech recognizer gets one out of ten words wrong, it is able
to recover from these errors because of its understanding of how dialogs
are put together.

An analyst in the Mission Operations room of the Jet Propulsion
Laboratory suddenly starts paying attention. A red message has flashed
onto the screen indicating an ‚anomaly‛ with the Voyager spacecraft,
which is somewhere in the vicinity of Neptune. Fortunately, the analyst
is able to correct the problem from the ground. Operations personnel
believe the problem might have been overlooked had it not been for
Marvel, a real-time expert system that monitors the massive stream of data
transmitted by the spacecraft, handling routine tasks and alerting the
analysts to more serious problems. Cruising the highway outside of
Pittsburgh at a comfortable 55 mph, the man in the driver’s seat seems
relaxed. He should be—for the past 90 miles, he has not had to touch the
steering wheel. The real driver is a robotic system that gathers input from
video cameras, sonar, and laser range finders attached to the van. It combines
these inputs with experience learned from training runs and succesfully
computes how to steer the vehicle.

Artificial Intelligence Systems in Computer Projects 55

A leading expert on lymph-node pathology describes a fiendishly
difficult case to the expert system, and examines the system’s diagnosis.
He scoffs at the system’s response. Only slightly worried, the creators of
the system suggest he ask the computer for an explanation of the diagnosis.
The machine points out the major factors influencing its decision, and
explains the subtle interaction of several of the symptoms in this case. The
expert admits his error, eventually.

From a camera perched on a street light above the crossroads, the
traffic monitor watches the scene. If any humans were awake to read the
main screen, they would see ‚Citroen 2CV turning from Place de la
Concorde into Champs Elysees,‛ ‚Large truck of unknown make stopped
on Place de la Concorde,‛ and so on into the night. And occasionally,
‚Major incident on Place de la Concorde, speeding van collided with
motorcyclist,‛ and an automatic call to the emergency services.

These are just a few examples of artificial intelligence systems that
exist today. Not magic or science fiction—but rather science, engineering,
and mathematics, to which this book provides an introduction.

ARTIFICIAL NEURAL NETWORK

An artificial neural network is a system based on the operation of
biological neural networks, in other words, is an emulation of biological
neural system. Why would be necessary the implementation of artificial
neural networks?

Although computing these days is truly advanced, there are certain
tasks that a programme made for a common microprocessor is unable to
perform; even so a software implementation of a neural network can be
made with their advantages and disadvantages.

Qualities

• A neural network can perform tasks that a linear programme can

not.

• When an element of the neural network fails, it can continue without
any problem by their parallel nature.

• A neural network learns and does not need to be reprogrammed.

• It can be implemented in any application.

• It can be implemented without any problem.

56 Artificial Intelligence : Making a System Intelligent

Drawbacks

• The neural network needs training to operate.

• The architecture of a neural network is different from the architecture

of microprocessors therefore needs to be emulated.

• Requires high processing time for large neural networks.

Another aspect of the artificial neural networks is that there are different
architectures, which consequently requires different types of algorithms,
but despite to be an apparently complex system, a neural network is
relatively simple.Artificial neural networks (ANN) are among the newest
signal-processing technologies in the engineer's toolbox.

The field is highly interdisciplinary, but our approach will restrict the
view to the engineering perspective. In engineering, neural networks
serve two important functions: as pattern classifiers and as nonlinear
adaptive filters.

We will provide a brief overview of the theory, learning rules, and
applications of the most important neural network models. Definitions
and Style of Computation An Artificial Neural Network is an adaptive,
most often nonlinear system that learns to perform a function (an input/
output map) from data. Adaptive means that the system parametres are
changed during operation, normally called the training phase.

After the training phase the Artificial Neural Network parametres are
fixed and the system is deployed to solve the problem at hand (the testing
phase). The Artificial Neural Network is built with a systematic step-by-
step procedure to optimize a performance criterion or to follow some
implicit internal constraint, which is commonly referred to as the learning
rule.

The input/output training data are fundamental in neural network
technology, because they convey the necessary information to 'discover'
the optimal operating point. The nonlinear nature of the neural network
processing elements (PEs) provides the system with lots of flexibility to
achieve practically any desired input/output map, i.e., some Artificial Neural
Networks are universal mappers. There is a style in neural computation
that is worth describing. An input is presented to the neural network and
a corresponding desired or target response set at the output (when this
is the case the training is called supervised). An error is composed from
the difference between the desired response and the system output.

This error information is fed back to the system and adjusts the system

Artificial Intelligence Systems in Computer Projects 57

parametres in a systematic fashion (the learning rule). The process is
repeated until the performance is acceptable. It is clear from this description
that the performance hinges heavily on the data.

If one does not have data that cover a significant portion of the
operating conditions or if they are noisy, then neural network technology
is probably not the right solution. On the other hand, if there is plenty of
data and the problem is poorly understood to derive an approximate
model, then neural network technology is a good choice.

This operating procedure should be contrasted with the traditional
engineering design, made of exhaustive subsystem specifications and
intercommunication protocols. In artificial neural networks, the designer
chooses the network topology, the performance function, the learning rule,
and the criterion to stop the training phase, but the system automatically
adjusts the parametres.

So, it is difficult to bring a priori information into the design, and
when the system does not work properly it is also hard to incrementally
refine the solution. But ANN-based solutions are extremely efficient in
terms of development time and resources, and in many difficult problems
artificial neural networks provide performance that is difficult to match
with other technologies. Denker 10 years ago said that 'artificial neural
networks are the second best way to implement a solution' motivated by
the simplicity of their design and because of their universality, only
shadowed by the traditional design obtained by studying the physics of
the problem.

At present, artificial neural networks are emerging as the technology
of choice for many applications, such as pattern recognition, prediction,
system identification, and control.

Biological Model

Artificial neural networks emerged after the introduction of simplified
neurons by McCulloch and Pitts in 1943. These neurons were presented
as models of biological neurons and as conceptual components for circuits
that could perform computational tasks. The basic model of the neuron
is founded upon the functionality of a biological neuron. 'Neurons are the
basic signaling units of the nervous system' and 'each neuron is a discrete
cell whose several processes arise from its cell body'.

The neuron has four main regions to its structure. The cell body, or

soma, has two offshoots from it, the dendrites, and the axon, which end

58 Artificial Intelligence : Making a System Intelligent

in presynaptic terminals. The cell body is the heart of the cell, containing
the nucleus and maintaining protein synthesis. A neuron may have many
dendrites, which branch out in a treelike structure, and receive signals
from other neurons.

A neuron usually only has one axon which grows out from a part of
the cell body called the axon hillock. The axon conducts electric signals
generated at the axon hillock down its length. These electric signals are
called action potentials.

The other end of the axon may split into several branches, which end
in a presynaptic terminal. Action potentials are the electric signals that
neurons use to convey information to the brain. All these signals are
identical.

Therefore, the brain determines what type of information is being
received based on the path that the signal took. The brain analyses the
patterns of signals being sent and from that information it can interpret
the type of information being received. Myelin is the fatty tissue that
surrounds and insulates the axon.

Often short axons do not need this insulation. There are uninsulated
parts of the axon. These areas are called Nodes of Ranvier. At these nodes,
the signal traveling down the axon is regenerated.

This ensures that the signal traveling down the axon travels fast and
remains constant (i.e. very short propagation delay and no weakening of
the signal). The synapse is the area of contact between two neurons. The
neurons do not actually physically touch. They are separated by the synaptic
cleft, and electric signals are sent through chemical 13 interaction. The
neuron sending the signal is called the presynaptic cell and the neuron
receiving the signal is called the postsynaptic cell.

The signals are generated by the membrane potential, which is based
on the differences in concentration of sodium and potassium ions inside
and outside the cell membrane. Neurons can be classified by their number
of processes (or appendages), or by their function.

If they are classified by the number of processes, they fall into three
categories. Unipolar neurons have a single process (dendrites and axon
are located on the same stem), and are most common in invertebrates. In
bipolar neurons, the dendrite and axon are the neuron's two separate
processes. Bipolar neurons have a subclass called pseudo-bipolar neurons,
which are used to send sensory information to the spinal cord. Finally,

Artificial Intelligence Systems in Computer Projects 59

multipolar neurons are most common in mammals. Examples of these
neurons are spinal motor neurons, pyramidal cells and Purkinje cells (in
the cerebellum). If classified by function, neurons again fall into three
separate categories. The first group is sensory, or afferent, neurons, which
provide information for perception and motor coordination.

The second group provides information (or instructions) to muscles
and glands and is therefore called motor neurons. The last group,
interneuronal, contains all other neurons and has two subclasses. One
group called relay or projection interneurons have long axons and connect
different parts of the brain. The other group called local interneurons are
only used in local circuits.

Distributed Representation

An artifcial neural network consists of a pool of simple processing
units which communicate by sending signals to each other over a large
number of weighted connections. A set of major aspects of a parallel
distributed model can be distinguished:

• A set of processing units ('neurons,' 'cells');

• A state of activation yk for every unit, which equivalent to the

output of the unit;

• Connections between the units. Generally each connection is defined

by a weight wjk which determines the effect which the signal of

unit j has on unit k;

• A propagation rule, which determines the effective input sk of a

unit from its external inputs;

• An activation function Fk, which determines the new level of
activation based on the efective input sk(t) and the current activation
yk(t) (i.e., the update);

• An external input (aka bias, offset) øk for each unit;

• A method for information gathering (the learning rule);

• An environment within which the system must operate, providing
input signals and|if necessary|error signals.

Processing Units

Each unit performs a relatively simple job: receive input from

neighbours or external sources and use this to compute an output signal

which is propagated to other units. Apart from this processing, a second

60 Artificial Intelligence : Making a System Intelligent

task is the adjustment of the weights. The system is inherently parallel in
the sense that many units can carry out their computations at the same
time. Within neural systems it is useful to distinguish three types of units:
input units (indicated by an index i) which receive data from outside the
neural network, output units (indicated by an index o) which send data
out of the neural network, and hidden units (indicated by an index h)
whose input and output signals remain within the neural network.

During operation, units can be updated either synchro-nously or
asynchronously. With synchronous updating, all units update their
activation simultaneously; with asynchronous updating, each unit has a
(usually fixed) probability of updating its activation at a time t, and usually
only one unit will be able to do this at a time. In some cases the latter model
has some advantages.

Categories of Model-Based AI Agents 61

Categories of Model-Based AI
Agents

INTELLIGENT AGENT

In artificial intelligence, an intelligent agent (IA) is anything which
perceives its environment, takes actions autonomously in order to achieve
goals, and may improve its performance with learning or may use
knowledge. They may be simple or complex — a thermostat is considered
an example of an intelligent agent, as is a human being, as is any system
that meets the definition, such as a firm, a state, or a biome.

Leading AI textbooks define ‚artificial intelligence‛ as the ‚study and
design of intelligent agents‛, a definition that considers goal-directed
behavior to be the essence of intelligence. Goal-directed agents are also
described using a term borrowed from economics, ‚rational agent‛.

An agent has an ‚objective function‛ that encapsulates all the IA’s
goals. Such an agent is designed to create and execute whatever plan will,
upon completion, maximize the expected value of the objective function.
For example, a reinforcement learning agent has a ‚reward function‛ that
allows the programmers to shape the IA’s desired behavior, and an
evolutionary algorithm’s behavior is shaped by a ‚fitness function‛.

Intelligent agents in artificial intelligence are closely related to agents
in economics, and versions of the intelligent agent paradigm are studied
in cognitive science, ethics, the philosophy of practical reason, as well as
in many interdisciplinary socio-cognitive modeling and computer social
simulations.

Intelligent agents are often described schematically as an abstract

functional system similar to a computer program. Abstract descriptions of

62 Artificial Intelligence : Making a System Intelligent

intelligent agents are called abstract intelligent agents (AIA) to distinguish
them from their real world implementations. An autonomous intelligent
agent is designed to function in the absence of human intervention.
Intelligent agents are also closely related to software agents (an autonomous
computer program that carries out tasks on behalf of users).

Definition of artificial intelligence

Computer science defines AI research as the study of intelligent agents.

The leading AI textbook defines an ‚agent‛ as:

• ‚Anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators‛ defines
a ‚rational agent‛ as:

• ‚An agent that acts so as to maximize the expected value of a
performance measure based on past experience and knowledge.‛
and defines the field of ‚artificial intelligence‛ research as:

• ‚The study and design of rational agents‛

A similar definition of AI is given by Kaplan and Haenlein: ‚A system’s
ability to correctly interpret external data, to learn from such data, and
to use those learnings to achieve specific goals and tasks through flexible
adaptation.‛

Padgham & Winikoff (2005) agree that an intelligent agent is situated
in an environment and responds in a timely (though not necessarily real-
time) manner to environment changes. However, intelligent agents must
also proactively pursue goals in a flexible and robust way. Optional
desiderata include that the agent be rational, and that the agent be capable
of belief-desire-intention analysis.

Advantages of this definition

Philosophically, it avoids several lines of criticism. Unlike the Turing
test, it does not refer to human intelligence in any way. Thus there is no
need to discuss if it is ‚real‛ vs ‚simulated‛ intelligence (i.e., ‚synthetic‛
vs ‚artificial‛ intelligence), and does not indicate that such a machine has
a mind, consciousness or true understanding (i.e., it does not imply John
Searle’s ‚strong AI hypothesis‛). It also doesn’t attempt to draw a sharp
dividing line between behaviors that are ‚intelligent‛ and behaviors that
are ‚unintelligent‛ — programs need only be measured in terms of their
objective function.

More importantly, it has a number of practical advantages that have

Categories of Model-Based AI Agents 63

helped move AI research forward. It provides a reliable and scientific way
to test programs; researchers can directly compare or even combine different
approaches to isolated problems, by asking which agent is best at
maximizing a given ‚goal function‛. It also gives them a common language
to communicate with other fields — such as mathematical optimization
(which is defined in terms of ‚goals‛) or economics (which uses the same
definition of a ‚rational agent‛).

Objective function

An agent that is assigned an explicit ‚goal function‛ is considered
more intelligent if it consistently takes actions that successfully maximize
its programmed goal function. The goal can be simple (‚1 if the IA wins
a game of Go, 0 otherwise‛) or complex (‚Perform actions mathematically
similar to ones that succeeded in the past‛). The ‚goal function‛ encapsulates
all of the goals the agent is driven to act on; in the case of rational agents,
the function also encapsulates the acceptable trade-offs between
accomplishing conflicting goals. (Terminology varies; for example, some
agents seek to maximize or minimize a ‚utility function‛, ‚objective
function‛, or ‚loss function‛.)

Goals can be explicitly defined or induced. If the AI is programmed
for ‚reinforcement learning‛, it has a ‚reward function‛ that encourages
some types of behavior and punishes others. Alternatively, an evolutionary
system can induce goals by using a ‚fitness function‛ to mutate and
preferentially replicate high-scoring AI systems, similar to how animals
evolved to innately desire certain goals such as finding food. Some AI
systems, such as nearest-neighbor, instead of reason by analogy, these
systems are not generally given goals, except to the degree that goals are
implicit in their training data. Such systems can still be benchmarked if
the non-goal system is framed as a system whose ‚goal‛ is to accomplish
its narrow classification task.

Systems that are not traditionally considered agents, such as
knowledge-representation systems, are sometimes subsumed into the
paradigm by framing them as agents that have a goal of (for example)
answering questions as accurately as possible; the concept of an ‚action‛
is here extended to encompass the ‚act‛ of giving an answer to a question.
As an additional extension, mimicry-driven systems can be framed as
agents who are optimizing a ‚goal function‛ based on how closely the IA
succeeds in mimicking the desired behavior. In the generative adversarial
networks of the 2010s, an ‚encoder‛/‛generator‛ component attempts to

64 Artificial Intelligence : Making a System Intelligent

mimic and improvise human text composition. The generator is attempting
to maximize a function encapsulating how well it can fool an antagonistic
‚predictor‛/‛discriminator‛ component.

While GOFAI systems often accept an explicit goal function, the
paradigm can also be applied to neural networks and to evolutionary
computing. Reinforcement learning can generate intelligent agents that
appear to act in ways intended to maximize a ‚reward function‛. Sometimes,
rather than setting the reward function to be directly equal to the desired
benchmark evaluation function, machine learning programmers will use
reward shaping to initially give the machine rewards for incremental
progress in learning. Yann LeCun stated in 2018 that ‚Most of the learning
algorithms that people have come up with essentially consist of minimizing
some objective function.‛ AlphaZero chess had a simple objective function;
each win counted as +1 point, and each loss counted as -1 point. An
objective function for a self-driving car would have to be more complicated.
Evolutionary computing can evolve intelligent agents that appear to act
in ways intended to maximize a ‚fitness function‛ that influences how
many descendants each agent is allowed to leave.

The theoretical and uncomputable AIXI design is a maximally
intelligent agent in this paradigm; however, in the real world, the IA is
constrained by finite time and hardware resources, and scientists compete
to produce algorithms that can achieve progressively higher scores on
benchmark tests with real-world hardware.

Classes of intelligent agents

Russel and Norvig’s classification

Russell & Norvig (2003) group agents into five classes based on their

degree of perceived intelligence and capability:

Simple reflex agents

Simple reflex agents act only on the basis of the current percept,
ignoring the rest of the percept history. The agent function is based on the
condition-action rule: ‚if condition, then action‛.

This agent function only succeeds when the environment is fully
observable. Some reflex agents can also contain information on their current
state which allows them to disregard conditions whose actuators are already
triggered.

Categories of Model-Based AI Agents 65

Infinite loops are often unavoidable for simple reflex agents operating
in partially observable environments. Note: If the agent can randomize its
actions, it may be possible to escape from infinite loops.

Model-based reflex agents

A model-based agent can handle partially observable environments.
Its current state is stored inside the agent maintaining some kind of structure
that describes the part of the world which cannot be seen. This knowledge
about ‚how the world works‛ is called a model of the world, hence the
name ‚model-based agent‛.

A model-based reflex agent should maintain some sort of internal
model that depends on the percept history and thereby reflects at least
some of the unobserved aspects of the current state. Percept history and
impact of action on the environment can be determined by using the
internal model. It then chooses an action in the same way as reflex agent.

An agent may also use models to describe and predict the behaviors

of other agents in the environment.

Goal-based agents

Goal-based agents further expand on the capabilities of the model-
based agents, by using ‚goal‛ information. Goal information describes
situations that are desirable. This provides the agent a way to choose
among multiple possibilities, selecting the one which reaches a goal state.
Search and planning are the subfields of artificial intelligence devoted to
finding action sequences that achieve the agent’s goals.

Utility-based agents

Goal-based agents only distinguish between goal states and non-goal
states. It is also possible to define a measure of how desirable a particular
state is. This measure can be obtained through the use of a utility function

which maps a state to a measure of the utility of the state.

A more general performance measure should allow a comparison of

different world states according to how well they satisfied the agent’s

goals. The term utility can be used to describe how ‚happy‛ the agent is.

A rational utility-based agent chooses the action that maximizes the
expected utility of the action outcomes - that is, what the agent expects
to derive, on average, given the probabilities and utilities of each outcome.

A utility-based agent has to model and keep track of its environment,

66 Artificial Intelligence : Making a System Intelligent

tasks that have involved a great deal of research on perception,

representation, reasoning, and learning.

Learning agents

Learning has the advantage that it allows the agents to initially
operate in unknown environments and to become more competent than
its initial knowledge alone might allow. The most important distinction
is between the ‚learning element‛, which is responsible for making
improvements, and the ‚performance element‛, which is responsible for
selecting external actions.

The learning element uses feedback from the ‚critic‛ on how the agent
is doing and determines how the performance element, or ‚actor‛, should
be modified to do better in the future. The performance element is what
we have previously considered to be the entire agent: it takes in percepts
and decides on actions.

The last component of the learning agent is the ‚problem generator‛.
It is responsible for suggesting actions that will lead to new and informative

experiences.

Weiss’s classification

Weiss (2013) defines four classes of agents:

• Logic-based agents – in which the decision about what action to

perform is made via logical deduction;

• Reactive agents – in which decision making is implemented in some
form of direct mapping from situation to action;

• Belief-desire-intention agents – in which decision making depends
upon the manipulation of data structures representing the beliefs,
desires, and intentions of the agent; and finally,

• Layered architectures – in which decision making is realized via
various software layers, each of which is more or less explicitly
reasoning about the environment at different levels of abstraction.

Hierarchies of agents

To actively perform their functions, Intelligent Agents today are
normally gathered in a hierarchical structure containing many ‚sub-agents‛.
Intelligent sub-agents process and perform lower level functions. Taken
together, the intelligent agent and sub-agents create a complete system
that can accomplish difficult tasks or goals with behaviors and responses
that display a form of intelligence.

Categories of Model-Based AI Agents 67

Generally, an agent can be constructed by separating the body into
the sensors and actuators, and so that it operates with a complex perception
system that takes the description of the world as input for a controller and
outputs commands to the actuator. However, a hierarchy of controller
layers is often necessary to balance the immediate reaction desired for low-
level tasks and the slow reasoning about complex, high-level goals.

INTELLIGENT AGENTS IN ARTIFICIAL INTELLIGENCE

An intelligent agent (IA) is an entity that makes a decision, that
enables artificial intelligence to be put into action. It can also be described
as a software entity that conducts operations in the place of users or
programs after sensing the environment. It uses actuators to initiate action
in that environment.

An Intelligent Agent (IA)

This agent has some level of autonomy that allows it to perform
specific, predictable, and repetitive tasks for users or applications. It’s also
termed as ‘intelligent’ because of its ability to learn during the process of
performing tasks. The two main functions of intelligent agents include
perception and action. Perception is done through sensors while actions
are initiated through actuators.

Intelligent agents consist of sub-agents that form a hierarchical

structure. Lower-level tasks are performed by these sub-agents.

The higher-level agents and lower-level agents form a complete system

that can solve difficult problems through intelligent behaviors or responses.

Characteristics of intelligent agents

Intelligent agents have the following distinguishing characteristics:

• They have some level of autonomy that allows them to perform

certain tasks on their own.

• They have a learning ability that enables them to learn even as tasks
are carried out.

• They can interact with other entities such as agents, humans, and
systems.

• New rules can be accommodated by intelligent agents incrementally.

• They exhibit goal-oriented habits.

• They are knowledge-based. They use knowledge regarding

communications, processes, and entities.

68 Artificial Intelligence : Making a System Intelligent

The structure of intelligent agents

The IA structure consists of three main parts: architecture, agent

function, and agent program.

1. Architecture: This refers to machinery or devices that consists of
actuators and sensors. The intelligent agent executes on this
machinery. Examples include a personal computer, a car, or a camera.

2. Agent function: This is a function in which actions are mapped
from a certain percept sequence. Percept sequence refers to a history
of what the intelligent agent has perceived.

3. Agent program: This is an implementation or execution of the agent

function. The agent function is produced through the agent

program’s execution on the physical architecture.

Categories of intelligent agents

There are 5 main categories of intelligent agents. The grouping of

these agents is based on their capabilities and level of perceived intelligence.

Simple reflex agents

These agents perform actions using the current percept, rather than
the percept history. The condition-action rule is used as the basis for the
agent function. In this category, a fully observable environment is ideal
for the success of the agent function.

Model-based reflex agents

Unlike simple reflex agents, model-based reflex agents consider the
percept history in their actions. The agent function can still work well even
in an environment that is not fully observable. These agents use an internal
model that determines the percept history and effect of actions. They
reflect on certain aspects of the present state that have been unobserved.

Goal-based agents

These agents have higher capabilities than model-based reflex agents.
Goal-based agents use goal information to describe desirable capabilities.
This allows them to choose among various possibilities. These agents
select the best action that enhances the attainment of the goal.

Utility-based agents

These agents make choices based on utility. They are more advanced
than goal-based agents because of an extra component of utility

Categories of Model-Based AI Agents 69

measurement. Using a utility function, a state is mapped against a certain
measure of utility. A rational agent selects the action that optimizes the
expected utility of the outcome.

Learning agents

These are agents that have the capability of learning from their previous

experience.

Learning agents have the following elements.

• The learning element: This element enables learning agents to learn

from previous experiences.

• The critic: It provides feedback on how the agent is doing.

• The performance element: This element decides on the external

action that needs to be taken.

• The problem generator: This acts as a feedback agent that performs
certain tasks such as making suggestions (new) and keeping history.

How intelligent agents work

Intelligent agents work through three main components: sensors,

actuators, and effectors. Getting an overview of these components can

improve our understanding of how intelligent agents work.

• Sensors: These are devices that detect any changes in the
environment. This information is sent to other devices. In artificial
intelligence, the environment of the system is observed by intelligent
agents through sensors.

• Actuators: These are components through which energy is converted
into motion. They perform the role of controlling and moving a
system. Examples include rails, motors, and gears.

• Effectors: The environment is affected by effectors. Examples include
legs, fingers, wheels, display screen, and arms.

Inputs (percepts) from the environment are received by the intelligent
agent through sensors. This agent uses artificial intelligence to make
decisions using the acquired information/ observations. Actions are then
triggered through actuators. Future decisions will be influenced by percept
history and past actions.

Applications of intelligent agents

Intelligent agents in artificial intelligence have been applied in many

real-life situations.

70 Artificial Intelligence : Making a System Intelligent

Information search, retrieval, and navigation

Intelligent agents enhance the access and navigation of information.
This is achieved through the search of information using search engines.
The internet consists of many data objects that may take users a lot of time
to search for a specific data object. Intelligent agents perform this task on
behalf of users within a short time.

Repetitive office activities

Some companies have automated certain administrative tasks to reduce
operating costs. Some of the functional areas that have been automated
include customer support and sales. Intelligent agents have also been used
to enhance office productivity.

Medical diagnosis

Intelligent agents have also been applied in healthcare services to
improve the health of patients. In this case, the patient is considered as
the environment. The computer keyboard is used as the sensor that receives
data on the symptoms of the patient.

The intelligent agent uses this information to decide the best course
of action. Medical care is given through actuators such as tests and
treatments.

Vacuum cleaning

AI agents are also used to enhance efficiency and cleanness in vacuum
cleaning.

In this case, the environment can be a room, table, or carpet. Some
of the sensors employed in vacuum cleaning include cameras, bump sensors,
and dirt detection sensors. Action is initiated by actuators such as brushes,
wheels, and vacuum extractors.

Autonomous driving

Intelligent agents enhance the operation of self-driving cars. In
autonomous driving, various sensors are employed to collect information
from the environment.

These include cameras, GPS, and radar. In this application, the
environment can be pedestrians, other vehicles, roads, or road signs.
Various actuators are used to initiate actions. For example, brakes are used
to bring the car to a stop.

Categories of Model-Based AI Agents 71

EXPLORING INTELLIGENT AGENTS IN ARTIFICIAL

INTELLIGENCE

Artificial Intelligence, typically abbreviated to AI, is a fascinating field
of Information Technology that finds its way into many aspects of modern
life. Although it may seem complex, and yes, it is, we can gain a greater
familiarity and comfort with AI by exploring its components separately.
When we learn how the pieces fit together, we can better understand and
implement them.

That’s why today we’re tackling the intelligent Agent in AI. This
chapter defines intelligent agents in Artificial Intelligence, AI agent functions
and structure, and the number and types of agents in AI.

An Agent in AI

Okay, did anyone, upon hearing the term ‚intelligent agent,‛
immediately picture a well-educated spy with a high IQ? No? Anyway,
in the context of the AI field, an ‚agent‛ is an independent program or
entity that interacts with its environment by perceiving its surroundings
via sensors, then acting through actuators or effectors.

Agents use their actuators to run through a cycle of perception, thought,
and action. Examples of agents in general terms include:

• Software: This Agent has file contents, keystrokes, and received
network packages that function as sensory input, then act on those
inputs, displaying the output on a screen.

• Human: Yes, we’re all agents. Humans have eyes, ears, and other
organs that act as sensors, and hands, legs, mouths, and other body
parts act as actuators.

• Robotic: Robotic agents have cameras and infrared range finders
that act as sensors, and various servos and motors perform as
actuators.

Intelligent agents in AI are autonomous entities that act upon an
environment using sensors and actuators to achieve their goals. In addition,
intelligent agents may learn from the environment to achieve those goals.
Driverless cars and the Siri virtual assistant are examples of intelligent
agents in AI.

These are the main four rules all AI agents must adhere to:

• Rule 1: An AI agent must be able to perceive the environment.

72 Artificial Intelligence : Making a System Intelligent

• Rule 2: The environmental observations must be used to make

decisions.

• Rule 3: The decisions should result in action.

• Rule 4: The action taken by the AI agent must be a rational. Rational
actions are actions that maximize performance and yield the best
positive outcome.

The Functions of an Artificial Intelligence Agent

Artificial Intelligence agents perform these functions continuously:

• Perceiving dynamic conditions in the environment

• Acting to affect conditions in the environment

• Using reasoning to interpret perceptions

• Problem-solving

• Drawing inferences

• Determining actions and their outcomes

THE NUMBER AND TYPES OF AGENTS IN ARTIFICIAL

INTELLIGENCE

There are five different types of intelligent agents used in AI. They

are defined by their range of capabilities and intelligence level:

• Reflex Agents: These agents work here and now and ignore the
past. They respond using the event-condition-action rule. The ECA
rule applies when a user initiates an event, and the Agent turns to
a list of pre-set conditions and rules, resulting in pre-programmed
outcomes.

• Model-based Agents: These agents choose their actions like reflex
agents do, but they have a better comprehensive view of the
environment. An environmental model is programmed into the
internal system, incorporating into the Agent’s history.

• Goal-based agents: These agents build on the information that a
model-based agent stores by augmenting it with goal information
or data regarding desirable outcomes and situations.

• Utility-based agents: These are comparable to the goal-based agents,
except they offer an extra utility measurement. This measurement
rates each possible scenario based on the desired result and selects
the action that maximizes the outcome. Rating criteria examples

Categories of Model-Based AI Agents 73

include variables such as success probability or the number of

resources required.

• Learning agents: These agents employ an additional learning element
to gradually improve and become more knowledgeable over time
about an environment. The learning element uses feedback to decide
how the performance elements should be gradually changed to
show improvement.

The Structure of Agents in Artificial Intelligence

Agents in Artificial Intelligence follow this simple structural formula:

Architecture + Agent Program = Agent

These are the terms most associated with agent structure:

• Architecture: This is the machinery or platform that executes the

agent.

• Agent Function: The agent function maps a precept to the Action,

represented by the following formula: f:P* - A

• Agent Program: The agent program is an implementation of the
agent function. The agent program produces function f by executing
on the physical architecture.

Many AI Agents use the PEAS model in their structure. PEAS is an
acronym for Performance Measure, Environment, Actuators, and Sensors.
For instance, take a vacuum cleaner.

• Performance: Cleanliness and efficiency

• Environment: Rug, hardwood floor, living room

• Actuator: Brushes, wheels, vacuum bag

• Sensors: Dirt detection sensor, bump sensor

Agents in Artificial Intelligence

Agents in Artificial Intelligence contain the following properties:

Environment

The agent is situated in a given environment.

Autonomous

The agent can operate without direct human intervention or other
software methods. It controls its activities and internal environment. The
agent independently which steps it will take in its current condition to

74 Artificial Intelligence : Making a System Intelligent

achieve the best improvements. The agent achieves autonomy if its
performance is measured by its experiences in the context of learning and
adapting.

Flexibility

• Reactive: Agents must recognize their surroundings and react to

the changes within them.

• Proactive: Agents shouldn’t only act in response to their

surroundings but also be able to take the initiative when appropriate

and effect an opportunistic, goal-directed performance.

• Social: Agents should work with humans or other non-human agents.

Reactive

• Reactive systems maintain ongoing interactions with their

environment, responding to its changes.

• The program’s environment may be guaranteed, not concerned

about its success or failure.

• Most environments are dynamic, meaning that things are constantly
in a state of change, and information is incomplete.

• Programs must make provisions for the possibility of failure.

Pro-Activeness

Taking the initiative to create goals and try to meet them.

Using Response Rules

The goal for the agent is directed behavior, having it do things for the

user.

• Mobility: The agent must have the ability to actuate around a system.

• Veracity: If an agent’s information is false, it will not communicate.

• Benevolence: Agents don’t have contradictory or conflicting goals.
Therefore, every Agent will always try to do what it is asked.

• Rationality: The agent will perform to accomplish its goals and not
work in a way that opposes or blocks them.

• Learning: An agent must be able to learn.

Improve the Performance of Intelligent Agents

When tackling the issue of how to improve intelligent Agent

performances, all we need to do is ask ourselves, ‚How do we improve

Categories of Model-Based AI Agents 75

our performance in a task?‛ The answer, of course, is simple. We perform
the task, remember the results, then adjust based on our recollection of
previous attempts.

Artificial Intelligence Agents improve in the same way. The Agent gets
better by saving its previous attempts and states, learning how to respond
better next time. This place is where Machine Learning and Artificial
Intelligence meet.

All About Problem-Solving Agents in Artificial Intelligence

Problem-solving Agents in Artificial Intelligence employ several

algorithms and analyses to develop solutions. They are:

• Search Algorithms: Search techniques are considered universal
problem-solving methods. Problem-solving or rational agents
employ these algorithms and strategies to solve problems and
generate the best results.

Uninformed Search Algorithms: Also called a Blind search, uninformed

searches have no domain knowledge, working instead in a brute-force

manner.

Informed Search Algorithms: Also known as a Heuristic search,
informed searches use domain knowledge to find the search strategies
needed to solve the problem.

• Hill Climbing Algorithms: Hill climbing algorithms are local search
algorithms that continuously move upwards, increasing their value
or elevation until they find the best solution to the problem or the
mountain’s peak.

Hill climbing algorithms are excellent for optimizing mathematical

problem-solving.

This algorithm is also known as a ‚greedy local search‛ because it only
checks out its good immediate neighbor.

• Means-Ends Analysis: The means-end analysis is a problem-solving
technique used to limit searches in Artificial Intelligence programs,
combining Backward and Forward search techniques.

The means-end analysis evaluates the differences between the Initial
State and the Final State, then picks the best operators that can be used
for each difference. The analysis then applies the operators to each matching
difference, reducing the current and goal state difference.

76 Artificial Intelligence : Making a System Intelligent

AGENTS IN ARTIFICIAL INTELLIGENCE

Artificial intelligence is defined as the study of rational agents. A
rational agent could be anything that makes decisions, as a person, firm,
machine, or software. It carries out an action with the best outcome after
considering past and current percepts(agent’s perceptual inputs at a given
instance). An AI system is composed of an agent and its environment. The
agents act in their environment. The environment may contain other agents.

An agent is anything that can be viewed as :

• perceiving its environment through sensors and

• acting upon that environment through actuators

To understand the structure of Intelligent Agents, we should be familiar
with Architecture and Agent programs. Architecture is the machinery that
the agent executes on. It is a device with sensors and actuators, for example,
a robotic car, a camera, a PC. Agent program is an implementation of an
agent function. An agent function is a map from the percept
sequence(history of all that an agent has perceived to date) to an action.

Agent = Architecture + Agent Program

Examples of Agent:

• A software agent has Keystrokes, file contents, received network

packages which act as sensors and displays on the screen, files, sent

network packets acting as actuators.

• A Human-agent has eyes, ears, and other organs which act as

sensors, and hands, legs, mouth, and other body parts acting as

actuators.

• A Robotic agent has Cameras and infrared range finders which act

as sensors and various motors acting as actuators.

Types of Agents

Agents can be grouped into five classes based on their degree of

perceived intelligence and capability :

• Simple Reflex Agents

• Model-Based Reflex Agents

• Goal-Based Agents

• Utility-Based Agents

• Learning Agent

Categories of Model-Based AI Agents 77

Simple reflex agents

Simple reflex agents ignore the rest of the percept history and act only
on the basis of the current percept. Percept history is the history of all that
an agent has perceived to date. The agent function is based on the condition-
action rule. A condition-action rule is a rule that maps a state i.e, condition
to an action. If the condition is true, then the action is taken, else not. This
agent function only succeeds when the environment is fully observable.
For simple reflex agents operating in partially observable environments,
infinite loops are often unavoidable. It may be possible to escape from
infinite loops if the agent can randomize its actions.

Problems with Simple reflex agents are :

• Very limited intelligence.

• No knowledge of non-perceptual parts of the state.

• Usually too big to generate and store.

• If there occurs any change in the environment, then the collection

of rules need to be updated.

Model-based reflex agents

It works by finding a rule whose condition matches the current
situation. A model-based agent can handle partially observable
environments by the use of a model about the world. The agent has to keep
track of the internal state which is adjusted by each percept and that
depends on the percept history. The current state is stored inside the agent
which maintains some kind of structure describing the part of the world
which cannot be seen.

Updating the state requires information about :

• how the world evolves independently from the agent, and

• how the agent’s actions affect the world.

Goal-based agents

These kinds of agents take decisions based on how far they are currently
from their goal(description of desirable situations). Their every action is
intended to reduce its distance from the goal. This allows the agent a way
to choose among multiple possibilities, selecting the one which reaches a
goal state. The knowledge that supports its decisions is represented
explicitly and can be modified, which makes these agents more flexible.
They usually require search and planning. The goal-based agent’s behavior
can easily be changed.

78 Artificial Intelligence : Making a System Intelligent

Utility-based agents

The agents which are developed having their end uses as building
blocks are called utility-based agents. When there are multiple possible
alternatives, then to decide which one is best, utility-based agents are
used. They choose actions based on a preference (utility) for each state.
Sometimes achieving the desired goal is not enough. We may look for a
quicker, safer, cheaper trip to reach a destination. Agent happiness should
be taken into consideration.

Utility describes how ‚happy‛ the agent is. Because of the uncertainty
in the world, a utility agent chooses the action that maximizes the expected
utility. A utility function maps a state onto a real number which describes
the associated degree of happiness.

INTELLIGENT AGENTS

An intelligent agent is an autonomous entity which act upon an
environment using sensors and actuators for achieving goals. An intelligent
agent may learn from the environment to achieve their goals. A thermostat
is an example of an intelligent agent.

Following are the main four rules for an AI agent:

• Rule 1: An AI agent must have the ability to perceive the

environment.

• Rule 2: The observation must be used to make decisions.

• Rule 3: Decision should result in an action.

• Rule 4: The action taken by an AI agent must be a rational action.

Rational Agent

A rational agent is an agent which has clear preference, models

uncertainty, and acts in a way to maximize its performance measure with

all possible actions.

A rational agent is said to perform the right things. AI is about creating
rational agents to use for game theory and decision theory for various real-
world scenarios.

For an AI agent, the rational action is most important because in AI
reinforcement learning algorithm, for each best possible action, agent gets
the positive reward and for each wrong action, an agent gets a negative
reward.

Categories of Model-Based AI Agents 79

Rationality

The rationality of an agent is measured by its performance measure.

Rationality can be judged on the basis of following points:

• Performance measure which defines the success criterion.

• Agent prior knowledge of its environment.

• Best possible actions that an agent can perform.

• The sequence of percepts.

Structure of an AI Agent

The task of AI is to design an agent program which implements the

agent function. The structure of an intelligent agent is a combination of

architecture and agent program. It can be viewed as:

1. Agent = Architecture + Agent program

Following are the main three terms involved in the structure of an AI

agent:

Architecture: Architecture is machinery that an AI agent executes on.

Agent Function: Agent function is used to map a percept to an action.

1. f:P* A

Agent program: Agent program is an implementation of agent function. An
agent program executes on the physical architecture to produce function f.

PEAS Representation

PEAS is a type of model on which an AI agent works upon. When

we define an AI agent or rational agent, then we can group its properties

under PEAS representation model. It is made up of four words:

• P: Performance measure

• E: Environment

• A: Actuators

• S: Sensors

Here performance measure is the objective for the success of an agent’s
behavior.

PEAS for self-driving cars:

Let’s suppose a self-driving car then PEAS representation will be:

Performance: Safety, time, legal drive, comfort

80 Artificial Intelligence : Making a System Intelligent

Environment: Roads, other vehicles, road signs, pedestrian

Actuators: Steering, accelerator, brake, signal, horn

Sensors: Camera, GPS, speedometer, odometer, accelerometer, sonar.

TYPES OF AI AGENTS

Agents can be grouped into five classes based on their degree of
perceived intelligence and capability. All these agents can improve their
performance and generate better action over the time. These are given
below:

Simple Reflex agent:

• The Simple reflex agents are the simplest agents. These agents take

decisions on the basis of the current percepts and ignore the rest

of the percept history.

• These agents only succeed in the fully observable environment.

• The Simple reflex agent does not consider any part of percepts
history during their decision and action process.

• The Simple reflex agent works on Condition-action rule, which
means it maps the current state to action. Such as a Room Cleaner
agent, it works only if there is dirt in the room.

• Problems for the simple reflex agent design approach:

o They have very limited intelligence

o They do not have knowledge of non-perceptual parts of the

current state

o Mostly too big to generate and to store.

o Not adaptive to changes in the environment.

Categories of Model-Based AI Agents 81

Model-based reflex agent

• The Model-based agent can work in a partially observable

environment, and track the situation.

82 Artificial Intelligence : Making a System Intelligent

• A model-based agent has two important factors:

o Model: It is knowledge about ‚how things happen in the world,‛
so it is called a Model-based agent.

o Internal State: It is a representation of the current state based
on percept history.

• These agents have the model, ‚which is knowledge of the world‛
and based on the model they perform actions.

• Updating the agent state requires information about:

1. How the world evolves

2. How the agent’s action affects the world.

Goal-based agents

• The knowledge of the current state environment is not always

sufficient to decide for an agent to what to do.

• The agent needs to know its goal which describes desirable situations.

• Goal-based agents expand the capabilities of the model-based agent

by having the ‚goal‛ information.
• They choose an action, so that they can achieve the goal.

• These agents may have to consider a long sequence of possible

actions before deciding whether the goal is achieved or not. Such

Categories of Model-Based AI Agents 83

considerations of different scenario are called searching and

planning, which makes an agent proactive.

Utility-based agents

• These agents are similar to the goal-based agent but provide an

extra component of utility measurement which makes them different

by providing a measure of success at a given state.

• Utility-based agent act based not only goals but also the best way

to achieve the goal.

• The Utility-based agent is useful when there are multiple possible
alternatives, and an agent has to choose in order to perform the best
action.

• The utility function maps each state to a real number to check how
efficiently each action achieves the goals.

Learning Agents

• A learning agent in AI is the type of agent which can learn from

its past experiences, or it has learning capabilities.

• It starts to act with basic knowledge and then able to act and adapt
automatically through learning.

• A learning agent has mainly four conceptual components, which

are:

84 Artificial Intelligence : Making a System Intelligent

1. Learning element: It is responsible for making improvements

by learning from environment

2. Critic: Learning element takes feedback from critic which

describes that how well the agent is doing with respect to a

fixed performance standard.

3. Performance element: It is responsible for selecting external

action

4. Problem generator: This component is responsible for suggesting

actions that will lead to new and informative experiences.

• Hence, learning agents are able to learn, analyze performance, and
look for new ways to improve the performance.

AI - AGENTS & ENVIRONMENTS

An AI system is composed of an agent and its environment. The

agents act in their environment. The environment may contain other agents.

Agent and Environment

An agent is anything that can perceive its environment through sensors

and acts upon that environment through effectors.

• A human agent has sensory organs such as eyes, ears, nose, tongue

Categories of Model-Based AI Agents 85

and skin parallel to the sensors, and other organs such as hands,

legs, mouth, for effectors.

• A robotic agent replaces cameras and infrared range finders for the

sensors, and various motors and actuators for effectors.

• A software agent has encoded bit strings as its programs and actions.

Agent Terminology

• Performance Measure of Agent ‚ It is the criteria, which determines

how successful an agent is.

• Behavior of Agent ‚ It is the action that agent performs after any
given sequence of percepts.

• Percept ‚ It is agent’s perceptual inputs at a given instance.

• Percept Sequence ‚ It is the history of all that an agent has perceived

till date.

• Agent Function ‚ It is a map from the precept sequence to an action.

Rationality

Rationality is nothing but status of being reasonable, sensible, and
having good sense of judgment.

Rationality is concerned with expected actions and results depending

upon what the agent has perceived. Performing actions with the aim of

obtaining useful information is an important part of rationality.

Ideal Rational Agent

An ideal rational agent is the one, which is capable of doing expected
actions to maximize its performance measure, on the basis of ‚

• Its percept sequence

• Its built-in knowledge base

Rationality of an agent depends on the following ‚

• The performance measures, which determine the degree of success.

• Agent’s Percept Sequence till now.

• The agent’s prior knowledge about the environment.

• The actions that the agent can carry out.

A rational agent always performs right action, where the right action
means the action that causes the agent to be most successful in the given
percept sequence. The problem the agent solves is characterized by
Performance Measure, Environment, Actuators, and Sensors (PEAS).

86 Artificial Intelligence : Making a System Intelligent

The Structure of Intelligent Agents

Agent’s structure can be viewed as ‚

• Agent = Architecture + Agent Program

• Architecture = the machinery that an agent executes on.

• Agent Program = an implementation of an agent function.

Simple Reflex Agents

• They choose actions only based on the current percept.

• They are rational only if a correct decision is made only on the basis
of current precept.

• Their environment is completely observable.

Condition-Action Rule ‚ It is a rule that maps a state (condition) to
an action.

Model Based Reflex Agents

They use a model of the world to choose their actions. They maintain

an internal state.

Model ‚ knowledge about ‚how the things happen in the world‛.
Internal State ‚ It is a representation of unobserved aspects of current

state depending on percept history.

Updating the state requires the information about ‚

• How the world evolves.

• How the agent’s actions affect the world.

Goal Based Agents

They choose their actions in order to achieve goals. Goal-based
approach is more flexible than reflex agent since the knowledge supporting
a decision is explicitly modeled, thereby allowing for modifications.

Goal ‚ It is the description of desirable situations.

Utility Based Agents

They choose actions based on a preference (utility) for each state.

Goals are inadequate when ‚

• There are conflicting goals, out of which only few can be achieved.

• Goals have some uncertainty of being achieved and you need to
weigh likelihood of success against the importance of a goal.

Categories of Model-Based AI Agents 87

The Nature of Environments

Some programs operate in the entirely artificial environment confined

to keyboard input, database, computer file systems and character output

on a screen.

In contrast, some software agents (software robots or softbots) exist
in rich, unlimited softbots domains. The simulator has a very detailed,
complex environment. The software agent needs to choose from a long
array of actions in real time. A softbot designed to scan the online preferences
of the customer and show interesting items to the customer works in the
real as well as an artificial environment.

The most famous artificial environment is the Turing Test environment,
in which one real and other artificial agents are tested on equal ground.
This is a very challenging environment as it is highly difficult for a software
agent to perform as well as a human.

Turing Test

The success of an intelligent behavior of a system can be measured
with Turing Test.

Two persons and a machine to be evaluated participate in the test. Out
of the two persons, one plays the role of the tester. Each of them sits in
different rooms. The tester is unaware of who is machine and who is a
human. He interrogates the questions by typing and sending them to both
intelligences, to which he receives typed responses. This test aims at
fooling the tester. If the tester fails to determine machine’s response from
the human response, then the machine is said to be intelligent.

Properties of Environment

The environment has multifold properties ‚

• Discrete / Continuous ‚ If there are a limited number of distinct,
clearly defined, states of the environment, the environment is discrete
(For example, chess); otherwise it is continuous (For example,
driving).

• Observable / Partially Observable ‚ If it is possible to determine the
complete state of the environment at each time point from the
percepts it is observable; otherwise it is only partially observable.

• Static / Dynamic ‚ If the environment does not change while an
agent is acting, then it is static; otherwise it is dynamic.

88 Artificial Intelligence : Making a System Intelligent

• Single agent / Multiple agents ‚ The environment may contain
other agents which may be of the same or different kind as that of
the agent.

• Accessible / Inaccessible ‚ If the agent’s sensory apparatus can have
access to the complete state of the environment, then the environment
is accessible to that agent.

• Deterministic / Non-deterministic ‚ If the next state of the
environment is completely determined by the current state and the
actions of the agent, then the environment is deterministic; otherwise
it is non-deterministic.

• Episodic / Non-episodic ‚ In an episodic environment, each episode
consists of the agent perceiving and then acting. The quality of its
action depends just on the episode itself. Subsequent episodes do
not depend on the actions in the previous episodes. Episodic
environments are much simpler because the agent does not need
to think ahead.

METHODS AND GOALS IN AI

Symbolic vs. connectionist approaches

AI research follows two distinct, and to some extent competing,
methods, the symbolic (or ‚top-down‛) approach, and the connectionist
(or ‚bottom-up‛) approach. The top-down approach seeks to replicate
intelligence by analyzing cognition independent of the biological structure
of the brain, in terms of the processing of symbols—whence the symbolic

label. The bottom-up approach, on the other hand, involves creating artificial
neural networks in imitation of the brain’s structure—whence the
connectionist label. To illustrate the difference between these approaches,
consider the task of building a system, equipped with an optical scanner,
that recognizes the letters of the alphabet.

A bottom-up approach typically involves training an artificial neural
network by presenting letters to it one by one, gradually improving
performance by ‚tuning‛ the network. (Tuning adjusts the responsiveness
of different neural pathways to different stimuli.)

In contrast, a top-down approach typically involves writing a computer
program that compares each letter with geometric descriptions. Simply
put, neural activities are the basis of the bottom-up approach, while symbolic
descriptions are the basis of the top-down approach.

Categories of Model-Based AI Agents 89

In The Fundamentals of Learning (1932), Edward Thorndike, a
psychologist at Columbia University, New York City, first suggested that
human learning consists of some unknown property of connections between
neurons in the brain. In The Organization of Behavior (1949), Donald Hebb,
a psychologist at McGill University, Montreal, Canada, suggested that
learning specifically involves strengthening certain patterns of neural
activity by increasing the probability (weight) of induced neuron firing
between the associated connections.

In 1957 two vigorous advocates of symbolic AI—Allen Newell, a
researcher at the RAND Corporation, Santa Monica, California, and Herbert
Simon, a psychologist and computer scientist at Carnegie Mellon University,
Pittsburgh, Pennsylvania—summed up the top-down approach in what
they called the physical symbol system hypothesis. This hypothesis states
that processing structures of symbols is sufficient, in principle, to produce
artificial intelligence in a digital computer and that, moreover, human
intelligence is the result of the same type of symbolic manipulations.

During the 1950s and ’60s the top-down and bottom-up approaches
were pursued simultaneously, and both achieved noteworthy, if limited,
results. During the 1970s, however, bottom-up AI was neglected, and it
was not until the 1980s that this approach again became prominent.

Nowadays both approaches are followed, and both are acknowledged
as facing difficulties. Symbolic techniques work in simplified realms but
typically break down when confronted with the real world; meanwhile,
bottom-up researchers have been unable to replicate the nervous systems
of even the simplest living things. Caenorhabditis elegans, a much-studied
worm, has approximately 300 neurons whose pattern of interconnections
is perfectly known. Yet connectionist models have failed to mimic even
this worm. Evidently, the neurons of connectionist theory are gross
oversimplifications of the real thing.

Strong AI, applied AI, and cognitive simulation

Employing the methods outlined above, AI research attempts to reach
one of three goals: strong AI, applied AI, or cognitive simulation. Strong
AI aims to build machines that think. (The term strong AI was introduced
for this category of research in 1980 by the philosopher John Searle of the
University of California at Berkeley.) The ultimate ambition of strong AI
is to produce a machine whose overall intellectual ability is indistinguishable
from that of a human being. As is described in the section Early milestones

90 Artificial Intelligence : Making a System Intelligent

in AI, this goal generated great interest in the 1950s and ’60s, but such
optimism has given way to an appreciation of the extreme difficulties
involved. To date, progress has been meagre. Some critics doubt whether
research will produce even a system with the overall intellectual ability
of an ant in the forseeable future. Indeed, some researchers working in
AI’s other two branches view strong AI as not worth pursuing.

Applied AI, also known as advanced information processing, aims to
produce commercially viable ‚smart‛ systems—for example, ‚expert‛
medical diagnosis systems and stock-trading systems. Applied AI has
enjoyed considerable success, as described in the section Expert systems.

In cognitive simulation, computers are used to test theories about how
the human mind works—for example, theories about how people recognize
faces or recall memories. Cognitive simulation is already a powerful tool
in both neuroscience and cognitive psychology.

ALAN TURING AND THE BEGINNING OF AI

Theoretical work

The earliest substantial work in the field of artificial intelligence was
done in the mid-20th century by the British logician and computer pioneer
Alan Mathison Turing. In 1935 Turing described an abstract computing
machine consisting of a limitless memory and a scanner that moves back
and forth through the memory, symbol by symbol, reading what it finds
and writing further symbols.

The actions of the scanner are dictated by a program of instructions
that also is stored in the memory in the form of symbols. This is Turing’s
stored-program concept, and implicit in it is the possibility of the machine
operating on, and so modifying or improving, its own program. Turing’s
conception is now known simply as the universal Turing machine. All
modern computers are in essence universal Turing machines. During World
War II, Turing was a leading cryptanalyst at the Government Code and
Cypher School in Bletchley Park, Buckinghamshire, England. Turing could
not turn to the project of building a stored-program electronic computing
machine until the cessation of hostilities in Europe in 1945. Nevertheless,
during the war he gave considerable thought to the issue of machine
intelligence. One of Turing’s colleagues at Bletchley Park, Donald Michie
(who later founded the Department of Machine Intelligence and Perception
at the University of Edinburgh), later recalled that Turing often discussed

Categories of Model-Based AI Agents 91

how computers could learn from experience as well as solve new problems
through the use of guiding principles—a process now known as heuristic
problem solving.

Turing gave quite possibly the earliest public lecture (London, 1947)
to mention computer intelligence, saying, ‚What we want is a machine
that can learn from experience,‛ and that the ‚possibility of letting the
machine alter its own instructions provides the mechanism for this.‛ In
1948 he introduced many of the central concepts of AI in a report entitled
‚Intelligent Machinery.‛ However, Turing did not publish this paper, and
many of his ideas were later reinvented by others. For instance, one of
Turing’s original ideas was to train a network of artificial neurons to
perform specific tasks, an approach described in the section Connectionism.

Chess

At Bletchley Park, Turing illustrated his ideas on machine intelligence
by reference to chess—a useful source of challenging and clearly defined
problems against which proposed methods for problem solving could be
tested. In principle, a chess-playing computer could play by searching
exhaustively through all the available moves, but in practice this is
impossible because it would involve examining an astronomically large
number of moves.

Heuristics are necessary to guide a narrower, more discriminative
search. Although Turing experimented with designing chess programs, he
had to content himself with theory in the absence of a computer to run
his chess program. The first true AI programs had to await the arrival of
stored-program electronic digital computers.

In 1945 Turing predicted that computers would one day play very
good chess, and just over 50 years later, in 1997, Deep Blue, a chess
computer built by the International Business Machines Corporation (IBM),
beat the reigning world champion, Garry Kasparov, in a six-game match.
While Turing’s prediction came true, his expectation that chess
programming would contribute to the understanding of how human beings
think did not. The huge improvement in computer chess since Turing’s day
is attributable to advances in computer engineering rather than advances
in AI—Deep Blue’s 256 parallel processors enabled it to examine 200
million possible moves per second and to look ahead as many as 14 turns
of play. Many agree with Noam Chomsky, a linguist at the Massachusetts
Institute of Technology (MIT), who opined that a computer beating a

92 Artificial Intelligence : Making a System Intelligent

grandmaster at chess is about as interesting as a bulldozer winning an

Olympic weightlifting competition.

ARTIFICIAL INTELLIGENCE FRAMEWORK: A VISUAL

INTRODUCTION TO MACHINE LEARNING AND AI

The transformative nature of Artificial Intelligence in business and
our society is evident. Like the internet and the smartphone, AI is an
enabler technology that will have a far-reaching impact on all areas of our
life. You will find many great articles here on medium or elsewhere which
give a very good introduction to AI (I have linked some at the end of this
chapter). Nevertheless, what I have not seen so far is an AI overview which
is easy to digest visually.

If you know something I could use instead, go ahead and let me know
in the comments section below. But until then, let me share the visualisation
that I am using right now. We will also briefly walk through the key
components of the figure in this chapter.

Artificial Intelligence in the First Place

In brief, Artificial Intelligence is a branch within computer science that
studies how to create machines which possess capabilities similar to human
intelligence. There are different maturity levels of artificial intelligence
which I will briefly touch upon in the upcoming chapters: superintelligence,
general Artificial Intelligence and narrow Artificial Intelligence.

Artificial Intelligence is very useful in order to digitize cognitive
capabilities where the exact rules to follow are difficult to explain. A good
AI use case would be face recognition. Trying to use handcrafted knowledge
to code all relevant rules for face recognition would be an approach
sometimes referred to as the first wave of AI (source). But with mature
technology like machine learning and deep learning available.

Key Drivers of Artificial Intelligence

Before we dig into the details, let’s take a quick look at the key factors
that drive recent advances in Artificial intelligence:

• Computing power: The price performance of computing power has
grown exponentially in alignment with Moore’s Law. Exponential
means that the computing speed doubles and/or the price drops by
half year over year. In recent years, machine learning as one of the
key drivers of AI advances has greatly benefited from GPUs

Categories of Model-Based AI Agents 93

(Graphics Processing Unit). GPUs are very performant for
conducting vectorised numerical operations which are needed for
all machine learning calculations. Google’s TPU (Tensor Processing
Unit) is another example where (co)processors are optimized for
machine learning problems. With great advances in quantum
computing it is very likely that this trend will continue and accelerate.

• Availability of data: There is an accelerated generation and
availability of data fueled by the increased use of mobile technology
and social media. In the last two years alone, an impressive 90%
of the world’s data was generated (source). Large amounts of data
are the key success factor in order to train neural networks (more
information further below) and therefore achieve a high accuracy
of their predictions for unseen events.

• Algorithms: The AI research community is very active and new
advances are published frequently. The biggest attention is on
machine learning, or to be more specific on deep neural networks.
There are also various tools and frameworks developed and ready
for public use by Google (Tensorflow), Facebook (PyTorch) or
Microsoft (Azure) to name a few.

Superintelligence

Some researchers predict and believe that at a certain point in the

future, machines will be smarter than humans. This might happen

somewhere between the years 2050 and 2100. Few researches argue that

94 Artificial Intelligence : Making a System Intelligent

this state will never be reached. But for most researchers familiar with the
subject, it is not a matter whether superintelligence will be reached but
rather when it will be reached.

Superintelligence is the state where a machine’s cognitive capability
surpasses that of humans. As Nick Bostrom puts it, it is an organism with
an ‚intellect that greatly exceeds the cognitive performance of humans in
virtually all domains of interest‛.

The advent of superintelligence is based on the assumption that the
rate of progress in an evolutionary learning environment is evolving
exponentially (Ray Kurzweil’s law of accelerating returns). This is difficult
to grasp because most people think rather linearly and try to predict the
future from what we already know and have experienced in the past. This
will of course lead to a wrong trajectory.

There is a great and fun article by Tim Urban explaining this journey
(link at the end of the article). It explains superintelligence and all its
implications much better than I will ever be able to. I highly recommend
to read his post if you are in the mood.

In the best case, superintelligence will lead to a future of abundance
and equity (singularity). In the worst scenario it will lead to the extinction
of mankind, not because superintelligence is evil but simply because
humans are in its way on achieving its goals (goals that we might not
be able to understand any longer since they surpass our cognitive
capabilities).

Categories of Model-Based AI Agents 95

TYPES OF AGENTS IN ARTIFICIAL INTELLIGENCE

Artificial intelligence refers to the study of rational agents to make
decisions related to a person, firm, machine or software. Considering the
past and present perceptual inputs of an agent at a particular instant, AI
carries out a task with the best outcome possible. AI system comprises of
agent and its environment. One particular environment consists of various
agents.

Agent is a part of AI system that takes actions or decisions based on
the information it perceives from the environment. For example, Robot
Agent utilizes information it senses from the environment using the sensors
in order to carry out a particular action.

On the other hand, Human Agent uses sensory organs to sense the

environment and takes particular actions and decisions regarding the

body parts of the human.

Structure of AI Agents

An AI agent comprises of Architecture and an Agent program.
Architecture involves machinery for execution of tasks by agents. It consists
of a device with sensors and effectors or actuators. An agent program
refers to the process of implementation of an agent function, which is map
of the percept sequence or the perceptual history of the agent for a particular
action.

96 Artificial Intelligence : Making a System Intelligent

RATIONAL AGENT

A rational agent or rational being is a person or entity that always aims
to perform optimal actions based on given premises and information. A
rational agent can be anything that makes decisions, typically a person,
firm, machine, or software. The concept of rational agents can be found
in various disciplines such as artificial intelligence, cognitive science,
decision theory, economics, ethics, game theory, and the study of practical
reason.

Economics

In reference to economics, rational agent refers to hypothetical
consumers and how they make decisions in a free market. This concept
is one of the assumptions made in neoclassical economic theory. The
concept of economic rationality arises from a tradition of marginal analysis
used in neoclassical economics. The idea of a rational agent is important
to the philosophy of utilitarianism, as detailed by philosopher Jeremy
Bentham’s theory of the felicific calculus, also known as the hedonistic
calculus.

The action a rational agent takes depends on:

• the preferences of the agent

• the agent’s information of its environment, which may come from
past experiences

• the actions, duties and obligations available to the agent

• the estimated or actual benefits and the chances of success of the

actions.

In game theory and classical economics, it is often assumed that the
actors, people, and firms are rational. However, the extent to which people
and firms behave rationally is subject to debate. Economists often assume
the models of rational choice theory and bounded rationality to formalize
and predict the behavior of individuals and firms. Rational agents
sometimes behave in manners that are counter-intuitive to many people,
as in the traveler’s dilemma.

Criticisms

Many economic theories reject utilitarianism and rational agency,
especially those that might be considered heterodox.

For example, Thorstein Veblen, known as the father of institutional

Categories of Model-Based AI Agents 97

economics, rejects the notion of hedonistic calculus and pure rationality
saying: ‚The hedonistic conception of man is that of a lightning calculator
of pleasures and pains who oscillates like a homogeneous globule of desire
of happiness under the impulse of stimuli that shift him about the area,
but leave him intact.‛

Veblen instead perceives human economic decisions as the result of
multiple complex cumulative factors: ‚It is the characteristic of man to do
something, not simply to suffer pleasures and pains through the impact
of suitable forces. He is ... a coherent structure of propensities and habits
which seeks realization and expression in an unfolding activity They

are the products of his hereditary traits and his past experience,
cumulatively wrought out under a given body of traditions
conventionalities, and material circumstances; and they afford the point
of departure for the next step in the process. The economic life history of
the individual is a cumulative process of adaptation of means to ends that
cumulatively change as the process goes on, both the agent and his
environment being at any point the outcome of the last process.‛
Evolutionary economics also provides criticisms of the Rational Agent,
citing the ‚parental bent‛ (the idea that biological impulses can and do
frequently override rational decision making based on utility). Arguments
against rational agency have also cited the enormous influence of marketing
as proof that humans can be persuaded to make economic decisions that
are ‚non-rational‛ in nature.

Alternate theories

Neuroeconomics is a concept that uses neuroscience, social psychology
and other fields of science to better understand how people make decisions.
Unlike rational agent theory, neuroeconomics does not attempt to predict
large-scale human behavior but rather how individuals make decisions in
case-by-case scenarios.

Artificial intelligence

Artificial intelligence has borrowed the term ‚rational agents‛ from
economics to describe autonomous programs that are capable of goal
directed behavior. Today there is a considerable overlap between AI
research, game theory and decision theory. Rational agents in AI are
closely related to intelligent agents, autonomous software programs that
display intelligence.

98 Artificial Intelligence : Making a System Intelligent

INTERACTION OF AGENTS WITH ENVIRONMENT

Interaction of the Agent with the environment uses Sensors and

Effectors. Sensors perceive the environment and the actuators or effectors

act upon that environment.

This interaction can occur in two different ways:

1. Perception: Perception is a passive interaction between the agent
and the environment where the environment remains unchanged
when the agent takes up information from the environment. This
involves gaining information using ‘Sensors’ from the surroundings
without any change to the surroundings.

2. Action: Action is an active interaction between the agent and the
environment where the environment changes when the action is
performed. This involves utilization of an ‘Effector’ or an ‘Actuator’
which completes an action but leads to changes in the surroundings
while doing so.

For example, in case of a virtual agent, when the virtual agent reads
and interprets the information provided by the user, it is known as
‘Perception’ while when it replies to the user based on the interpretation
it is known as ‘Action’.

Action of Agents In Artificial Intelligence

Agents in Artificial Intelligence act by:

1. Mapping of the Percept sequences or Perceptual history to the
Actions: Mapping refers to a list that maps a particular percept
sequence to the action. The design for an ideal agent can be figured
out by specifying an action corresponding to the percept sequence
or the perceptual history.

2. Autonomy: The agent designer determines the behavior of the
agent by determining its experience and its built-in knowledge.
Autonomy refers to taking actions based on the experience of the
agent. If the system comprises of an autonomous intelligent agent
then it is able to operate and adapt successfully in a wide range of
environments.

Examples of Agents

Some examples of agents are as follows:

1. Software agent: It comprises of sensors like Keystrokes, file contents,

Categories of Model-Based AI Agents 99

received network packages and actuators or effectors like displays

on the screen, files, sent network packets.

2. Human agent: It comprises of sensors like eyes, ears, and other

sensory organs and actuators or effectors like hands, legs, mouth,

and other body parts.

3. Robotic agent: It comprises of sensors like Cameras and infrared
range finders and actuators or effectors in the form of various
motors.

Types of Agents

Based on their degree of perceived intelligence and capability, Agents
can be divided into the following types:

1. SIMPLE REFLEX AGENTS

2. MODEL-BASED AGENTS

3. GOAL-BASED AGENTS

4. UTILITY-BASED AGENTS

5. LEARNING AGENTS

Performance can be improved and better action can be generated for

each of these types of agents in AI.

Simple Reflex Agents

1. This is a simple type of agent which works on the basis of current
percept and not based on the rest of the percepts history.

2. The agent function, in this case, is based on condition-action
rule where the condition or the state is mapped to the action
such that action is taken only when condition is true or else it
is not.

3. If the environment associated with this agent is fully observable,
only then is the agent function successful, if it is partially observable,
in that case the agent function enters into infinite loops that can be
escaped only on randomization of its actions.

4. The problems associated with this type include very limited
intelligence, No knowledge of non-perceptual parts of the state,
huge size for generation and storage and inability to adapt to
changes in the environment.

This can be illustrated using the following image:

10
0

Artificial Intelligence : Making a System Intelligent

Model-Based Agents

1. Model-Based Reflex Agent utilizes condition-action rule where it
works by finding a rule that will allow the condition, which is based
on the current situation, to be satisfied.

2. Irrespective of the first type, it can handle partially observable
environments by tracking the situation and using a particular model
related to the world.

3. It consists of two important factors, which are Model and Internal

State.

4. Model provides knowledge and understanding of the process of
occurrence of different things in the surroundings such that the
current situation can be studied and a condition can be created.
Actions are performed by the agent based on this model.

5. Internal State uses the perceptual history to represent a current
percept. The agent keeps a track of this internal state and is adjusted
by each of the percepts. The current internal state is stored by the
agent inside it to maintain a kind of structure that can describe the
unseen world.

6. The state of the agent can be updated by gaining information about

how the world evolves and how the agent’s action affects the world.

This can be illustrated as:

Goal-Based Agents

1. This type takes decisions on the basis of its goal or desirable situations

Categories of Model-Based AI Agents 101

so that it can choose such an action that can achieve the goal

required.

2. It is an improvement over model based agent where information
about the goal is also included. This is because it is not always
sufficient to know just about the current state, knowledge of the
goal is a more beneficial approach.

3. The aim is to reduce the distance between action and the goal so that the
best possible way can be chosen from multiple possibilities. Once the best
way is found, the decision is represented explicitly which makes the agent
more flexible.

4. It carries out considerations of different situations called searching
and planning by considering long sequence of possible actions for
confirming its ability to achieve the goal. This makes the agent
proactive.

5. It can easily change its behavior if required.

This can be illustrated as follows:

Utility-Based Agents

1. Utility agent have their end uses as their building blocks and is used
when best action and decision needs to be taken from multiple
alternatives.

10
2

Artificial Intelligence : Making a System Intelligent

2. It is an improvement over goal based agent as it not only involves

the goal but also the way the goal can be achieved such that the

goal can be achieved in a quicker, safer, cheaper way.

3. The extra component of utility or method to achieve a goal provides

a measure of success at a particular state that makes the utility agent

different.

4. It takes the agent happiness into account and gives an idea of
how happy the agent is because of the utility and hence, the
action with maximum utility is considered. This associated
degree of happiness can be calculated by mapping a state onto
a real number.

5. Mapping of a state onto a real number with the help of utility

function gives the efficiency of an action to achieve the goal.

This can be illustrated as follows:

Learning Agents

1. Learning agent, as the name suggests, has the capability to learn

from past experiences and takes actions or decisions based on

learning capabilities.

2. It gains basic knowledge from past and uses that learning to act and

adapt automatically.

Categories of Model-Based AI Agents 103

3. It comprises of four conceptual components, which are given as

follows:

• Learning element: It makes improvements by learning from the

environment.

• Critic: Critic provides feedback to the learning agent giving the

performance measure of the agent with respect to the fixed

performance standard.

• Performance element: It selects the external action.

• Problem generator: This suggests actions that lead to new and

informative experiences.

This can be illustrated as follows:

Summing Up

This chapter brings the following points to the attention of the readers:

1. Artificial intelligence refers to the study of rational agents to make

10
4

Artificial Intelligence : Making a System Intelligent

decisions related to a person, firm, machine or software. AI system

comprises of agent and its environment.

2. Agent is a part of AI system that takes actions or decisions based

on the information it perceives from the environment.

3. Agents interact with the environment using sensors and actuators

or effectors in two different ways which are perception and Action.

4. Perception is a passive interaction between the agent and the
environment where the environment remains unchanged when the
agent takes up information from the environment while Action is
an active interaction between them where the environment changes
when the action is performed.

5. The agents in AI act by Mapping of the Percept sequences or
Perceptual history to the Actions and Autonomy.

6. Based on their degree of perceived intelligence and capability, Agents
can be divided into five types which are Simplex reflex agent,
Model Based agent, Goal based agent, Utility agent and Learning
agent.

Applications of Artificial Intelligence 105

Applications of Artificial
Intelligence

Artificial intelligence, defined as intelligence exhibited by machines,
has many applications in today’s society. More specifically, it is Weak AI,
the form of AI where programs are developed to perform specific tasks,
that is being utilized for a wide range of activities including medical
diagnosis, electronic trading platforms, robot control, and remote sensing.
AI has been used to develop and advance numerous fields and industries,
including finance, healthcare, education, transportation, and more.

AI for Good

AI for Good is an ITU initiative supporting institutions employing AI
to tackle some of the world’s greatest economic and social challenges. For
example, the University of Southern California launched the Center for
Artificial Intelligence in Society, with the goal of using AI to address
socially relevant problems such as homelessness. At Stanford, researchers
are using AI to analyze satellite images to identify which areas have the
highest poverty levels.

Agriculture

In agriculture new AI advancements show improvements in gaining
yield and to increase the research and development of growing crops.
New artificial intelligence now predicts the time it takes for a crop like
a tomato to be ripe and ready for picking thus increasing efficiency of
farming. These advances go on including Crop and Soil Monitoring,
Agricultural Robots, and Predictive Analytics. Crop and soil monitoring
uses new algorithms and data collected on the field to manage and track
the health of crops making it easier and more sustainable for the farmers.

106 Artificial Intelligence : Making a System Intelligent

More specializations of AI in agriculture is one such as greenhouse

automation, simulation, modeling, and optimization techniques.

Due to the increase in population and the growth of demand for food
in the future there will need to be at least a 70% increase in yield from
agriculture to sustain this new demand. More and more of the public
perceives that the adaption of these new techniques and the use of Artificial
intelligence will help reach that goal.

Aviation

The Air Operations Division (AOD) uses AI for the rule based expert
systems. The AOD has use for artificial intelligence for surrogate operators
for combat and training simulators, mission management aids, support
systems for tactical decision making, and post processing of the simulator
data into symbolic summaries.

The use of artificial intelligence in simulators is proving to be very
useful for the AOD. Airplane simulators are using artificial intelligence in
order to process the data taken from simulated flights. Other than simulated
flying, there is also simulated aircraft warfare. The computers are able to
come up with the best success scenarios in these situations. The computers
can also create strategies based on the placement, size, speed and strength
of the forces and counter forces. Pilots may be given assistance in the air
during combat by computers. The artificial intelligent programs can sort
the information and provide the pilot with the best possible maneuvers,
not to mention getting rid of certain maneuvers that would be impossible
for a human being to perform. Multiple aircraft are needed to get good
approximations for some calculations so computer simulated pilots are
used to gather data. These computer simulated pilots are also used to train
future air traffic controllers.

The system used by the AOD in order to measure performance was
the Interactive Fault Diagnosis and Isolation System, or IFDIS. It is a rule
based expert system put together by collecting information from TF-30
documents and the expert advice from mechanics that work on the TF-

30. This system was designed to be used for the development of the TF-
30 for the RAAF F-111C. The performance system was also used to replace
specialized workers. The system allowed the regular workers to
communicate with the system and avoid mistakes, miscalculations, or
having to speak to one of the specialized workers.

The AOD also uses artificial intelligence in speech recognition software.

Applications of Artificial Intelligence 107

The air traffic controllers are giving directions to the artificial pilots and
the AOD wants to the pilots to respond to the ATC’s with simple responses.
The programs that incorporate the speech software must be trained, which
means they use neural networks. The program used, the Verbex 7000, is
still a very early program that has plenty of room for improvement. The
improvements are imperative because ATCs use very specific dialog and
the software needs to be able to communicate correctly and promptly
every time.

The Artificial Intelligence supported Design of Aircraft, or AIDA, is
used to help designers in the process of creating conceptual designs of
aircraft. This program allows the designers to focus more on the design
itself and less on the design process. The software also allows the user to
focus less on the software tools. The AIDA uses rule based systems to
compute its data. This is a diagram of the arrangement of the AIDA
modules. Although simple, the program is proving effective.

In 2003, NASA’s Dryden Flight Research Center, and many other
companies, created software that could enable a damaged aircraft to
continue flight until a safe landing zone can be reached. The software
compensates for all the damaged components by relying on the undamaged
components. The neural network used in the software proved to be effective
and marked a triumph for artificial intelligence.

The Integrated Vehicle Health Management system, also used by
NASA, on board an aircraft must process and interpret data taken from
the various sensors on the aircraft. The system needs to be able to determine
the structural integrity of the aircraft. The system also needs to implement
protocols in case of any damage taken the vehicle. Haitham Baomar and
Peter Bentley are leading a team from the University College of London
to develop an artificial intelligence based Intelligent Autopilot System
(IAS) designed to teach an autopilot system to behave like a highly
experienced pilot who is faced with an emergency situation such as severe
weather, turbulence, or system failure. Educating the autopilot relies on
the concept of supervised machine learning ‚which treats the young
autopilot as a human apprentice going to a flying school‛. The autopilot
records the actions of the human pilot generating learning models using
artificial neural networks. The autopilot is then given full control and
observed by the pilot as it executes the training exercise.

The Intelligent Autopilot System combines the principles of
Apprenticeship Learning and Behavioural Cloning whereby the autopilot

108 Artificial Intelligence : Making a System Intelligent

observes the low-level actions required to maneuver the airplane and
high-level strategy used to apply those actions. IAS implementation employs
three phases; pilot data collection, training, and autonomous control.
Baomar and Bentley’s goal is to create a more autonomous autopilot to
assist pilots in responding to emergency situations.

Computer science

AI researchers have created many tools to solve the most difficult
problems in computer science. Many of their inventions have been adopted
by mainstream computer science and are no longer considered a part of
AI. According to Russell & Norvig , all of the following were originally
developed in AI laboratories: time sharing, interactive interpreters, graphical
user interfaces and the computer mouse, Rapid application development
environments, the linked list data structure, automatic storage management,
symbolic programming, functional programming, dynamic programming
and object-oriented programming.

AI can be used to potentially determine the developer of anonymous

binaries.

AI can be used to create other AI. For example, around November
2017, Google’s AutoML project to evolve new neural net topologies created
NASNet, a system optimized for ImageNet and COCO. According to
Google, NASNet’s performance exceeded all previously published
ImageNet performance.

Deepfake

In June 2016, a research team from the visual computing group of the
Technical University of Munich and from Stanford University developed
Face2Face, a program which animates the face of a target person,
transposing the facial expressions of an exterior source. The technology
has been demonstrated animating the lips of people including Barack
Obama and Vladimir Putin. Since then, other methods have been
demonstrated based on deep neural network, from which the name
‚deepfake‛ was taken.

Hollywood film studios had already used the technique in animated
films, but it took time and efforts from professionals. The main difference
is that today anyone can use a deep fake software and rig videos.

In September 2018, the U.S. Senator Mark Warner proposed to penalize
social media companies that allow sharing of deepfake documents on their
platform.

Applications of Artificial Intelligence 109

Vincent Nozick, a researcher from the Institut Gaspard Monge, found
a way to detect rigged documents by analyzing the movements of the
eyelid. The DARPA (a research group associated with the U.S. Department
of Defense) has given 68 million dollars to work on deepfake detection.
In Europe, the Horizon 2020 program financed InVid, software designed
to help journalists to detect fake documents.

Education

AI tutors could allow for students to get extra, one-on-one help. They
could also reduce anxiety and stress for some students, that may be caused
by tutor labs or human tutors. In future classrooms, ambient informatics
can play a beneficial role. Ambient informatics is the idea that information
is everywhere in the environment and that technologies automatically
adjust to your personal preferences.

Study devices could be able to create lessons, problems, and games
to tailor to the specific student’s needs, and give immediate feedback.

But AI can also create a disadvantageous environment with revenge
effects, if technology is inhibiting society from moving forward and causing
negative, unintended effects on society. An example of a revenge effect is
that the extended use of technology may hinder students’ ability to focus
and stay on task instead of helping them learn and grow. Also, AI has been
known to lead to the loss of both human agency and simultaneity.

Finance

Algorithmic trading

Algorithmic trading involves the use of complex AI systems to make
trading decisions at speeds several orders of magnitudes greater than any
human is capable of, often making millions of trades in a day without any
human intervention. Such trading is called High-frequency Trading, and
it represents one of the fastest growing sectors in financial trading. Many
banks, funds, and proprietary trading firms now have entire portfolios
which are managed purely by AI systems. Automated trading systems are
typically used by large institutional investors, but recent years have also
seen an influx of smaller, proprietary firms trading with their own AI
systems.

Market analysis and data mining

Several large financial institutions have invested in AI engines to

110 Artificial Intelligence : Making a System Intelligent

assist with their investment practices. BlackRock’s AI engine, Aladdin, is
used both within the company and to clients to help with investment
decisions. Its wide range of functionalities includes the use of natural
language processing to read text such as news, broker reports, and social
media feeds. It then gauges the sentiment on the companies mentioned
and assigns a score. Banks such as UBS and Deutsche Bank use an AI
engine called Sqreem (Sequential Quantum Reduction and Extraction
Model) which can mine data to develop consumer profiles and match
them with the wealth management products they’d most likely want.
Goldman Sachs uses Kensho, a market analytics platform that combines
statistical computing with big data and natural language processing. Its
machine learning systems mine through hoards of data on the web and
assess correlations between world events and their impact on asset prices.
Information Extraction, part of artificial intelligence, is used to extract
information from live news feed and to assist with investment decisions.

Personal finance

Several products are emerging that utilize AI to assist people with
their personal finances. For example, Digit is an app powered by artificial
intelligence that automatically helps consumers optimize their spending
and savings based on their own personal habits and goals.

The app can analyze factors such as monthly income, current balance,
and spending habits, then make its own decisions and transfer money to
the savings account. Wallet.AI, an upcoming startup in San Francisco,
builds agents that analyze data that a consumer would leave behind, from
Smartphone check-ins to tweets, to inform the consumer about their
spending behavior.

Portfolio management

Robo-advisors are becoming more widely used in the investment
management industry. Robo-advisors provide financial advice and portfolio
management with minimal human intervention. This class of financial
advisers work based on algorithms built to automatically develop a financial
portfolio according to the investment goals and risk tolerance of the clients.
It can adjust to real-time changes in the market and accordingly calibrate
the portfolio.

Underwriting

An online lender, Upstart, analyze vast amounts of consumer data and

Applications of Artificial Intelligence 111

utilizes machine learning algorithms to develop credit risk models that
predict a consumer’s likelihood of default. Their technology will be licensed
to banks for them to leverage for their underwriting processes as well.

ZestFinance developed their Zest Automated Machine Learning
(ZAML) Platform specifically for credit underwriting as well. This platform
utilizes machine learning to analyze tens of thousands traditional and
nontraditional variables (from purchase transactions to how a customer
fills out a form) used in the credit industry to score borrowers. The platform
is particularly useful to assign credit scores to those with limited credit
histories, such as millennials.

History

The 1980s is really when AI started to become prominent in the
finance world. This is when expert systems became more of a commercial
product in the financial field. ‚For example, Dupont had built 100 expert
systems which helped them save close to $10 million a year.‛ One of the
first systems was the Protrader expert system designed by K.C. Chen and
Ting-peng Lian that was able to predict the 87-point drop in DOW Jones
Industrial Average in 1986. ‚The major junctions of the system were to
monitor premiums in the market, determine the optimum investment
strategy, execute transactions when appropriate and modify the knowledge
base through a learning mechanism.‛ One of the first expert systems that
helped with financial plans was created by Applied Expert Systems (APEX)
called the PlanPower. It was first commercially shipped in 1986. Its function
was to help give financial plans for people with incomes over $75,000 a
year. That then led to the Client Profiling System that was used for incomes
between $25,000 and $200,000 a year. The 1990s was a lot more about fraud
detection. One of the systems that was started in 1993 was the FinCEN
Artificial Intelligence system (FAIS). It was able to review over 200,000
transactions per week and over two years it helped identify 400 potential
cases of money laundering which would have been equal to $1 billion.
Although expert systems did not last in the finance world, it did help
jump-start the use of AI and help make it what it is today.

Heavy industry

Robots have become common in many industries and are often given
jobs that are considered dangerous to humans. Robots have proven effective
in jobs that are very repetitive which may lead to mistakes or accidents
due to a lapse in concentration and other jobs which humans may find

112 Artificial Intelligence : Making a System Intelligent

degrading. In 2014, China, Japan, the United States, the Republic of Korea
and Germany together amounted to 70% of the total sales volume of
robots. In the automotive industry, a sector with particularly high degree
of automation, Japan had the highest density of industrial robots in the
world: 1,414 per 10,000 employees.

Hospitals and medicine

Artificial neural networks are used as clinical decision support systems
for medical diagnosis, such as in Concept Processing technology in EMR
software.

Other tasks in medicine that can potentially be performed by artificial

intelligence and are beginning to be developed include:

• Computer-aided interpretation of medical images. Such systems
help scan digital images, e.g. from computed tomography, for typical
appearances and to highlight conspicuous sections, such as possible
diseases. A typical application is the detection of a tumor.

• Heart sound analysis

• Companion robots for the care of the elderly

• Mining medical records to provide more useful information.

• Design treatment plans.

• Assist in repetitive jobs including medication management.

• Provide consultations.

• Drug creation

• Using avatars in place of patients for clinical training

• Predict the likelihood of death from surgical procedures

• Predict HIV progression

There are over 90 AI startups in the health industry working in these

fields.

IDx’s first solution, IDx-DR, is the first autonomous AI-based diagnostic

system authorized for commercialization by the FDA.

Human resources and recruiting

Another application of AI is in the human resources and recruiting
space. There are three ways AI is being used by human resources and
recruiting professionals: to screen resumes and rank candidates according
to their level of qualification, to predict candidate success in given roles

Applications of Artificial Intelligence 113

through job matching platforms, and rolling out recruiting chat bots that
can automate repetitive communication tasks. Typically, resume screening
involves a recruiter or other HR professional scanning through a database
of resumes.

Job search

The job market has seen a notable change due to artificial intelligence
implementation. It has simplified the process for both recruiters and job
seekers (i.e., Google for Jobs and applying online). According to Raj
Mukherjee from Indeed.com, 65% of people launch a job search again
within 91 days of being hired. AI-powered engine streamlines the
complexity of job hunting by operating information on job skills, salaries,
and user tendencies, matching people to the most relevant positions.
Machine intelligence calculates what wages would be appropriate for a
particular job, pulls and highlights resume information for recruiters using
natural language processing, which extracts relevant words and phrases
from text using specialized software. Another application is an AI resume
builder which requires 5 minutes to compile a CV as opposed to spending
hours doing the same job. In the AI age chatbots assist website visitors and
solve daily workflows. Revolutionary AI tools complement people’s skills
and allow HR managers to focus on tasks of higher priority. However,
Artificial Intelligence impact on jobs research suggests that by 2030
intelligent agents and robots can eliminate 30% of the world’s human
labor. Moreover, the research proves automation will displace between 400
and 800 million employees. Glassdoor’s research report states that recruiting
and HR are expected to see much broader adoption of AI in job market
2018 and beyond.

Media and e-commerce

Some AI applications are geared towards the analysis of audiovisual
media content such as movies, TV programs, advertisement videos or
user-generated content. The solutions often involve computer vision, which
is a major application area of AI.

Typical use case scenarios include the analysis of images using object
recognition or face recognition techniques, or the analysis of video for
recognizing relevant scenes, objects or faces. The motivation for using AI-
based media analysis can be — among other things — the facilitation of
media search, the creation of a set of descriptive keywords for a media
item, media content policy monitoring (such as verifying the suitability

114 Artificial Intelligence : Making a System Intelligent

of content for a particular TV viewing time), speech to text for archival
or other purposes, and the detection of logos, products or celebrity faces
for the placement of relevant advertisements.

Media analysis AI companies often provide their services over a REST
API that enables machine-based automatic access to the technology and
allows machine-reading of the results. For example, IBM, Microsoft, Amazon
and the video AI company Valossa allow access to their media recognition
technology by using RESTful APIs.

AI is also widely used in E-commerce applications like visual search,
chatbots, and automated product tagging. Another generic application is
to increase search discoverability and making social media content
shoppable.

Military

The main military applications of Artificial Intelligence and Machine
Learning are to enhance Command and Control, Communications, Sensors,
Integration and Interoperability. Artificial Intelligence technologies enables
coordination of sensors and effectors, threat detection and identification,
marking of enemy positions, target acquisition, coordination and
deconfliction of distributed Join Fires between networked combat vehicles
and tanks also inside Manned and Unmanned Teams (MUM-T).

Music

While the evolution of music has always been affected by technology,
artificial intelligence has enabled, through scientific advances, to emulate,
at some extent, human-like composition.

Among notable early efforts, David Cope created an AI called Emily
Howell that managed to become well known in the field of Algorithmic
Computer Music. The algorithm behind Emily Howell is registered as a
US patent.

The AI Iamus created 2012 the first complete classical album fully

composed by a computer.

Other endeavours, like AIVA (Artificial Intelligence Virtual Artist),
focus on composing symphonic music, mainly classical music for film
scores. It achieved a world first by becoming the first virtual composer to
be recognized by a musical professional association.

Artificial intelligences can even produce music usable in a medical

setting, with Melomics’s effort to use computer-generated music for stress

Applications of Artificial Intelligence 115

and pain relief. Moreover, initiatives such as Google Magenta, conducted
by the Google Brain team, want to find out if an artificial intelligence can
be capable of creating compelling art.

At Sony CSL Research Laboratory, their Flow Machines software has
created pop songs by learning music styles from a huge database of songs.
By analyzing unique combinations of styles and optimizing techniques, it
can compose in any style.

Another artificial intelligence musical composition project, The Watson
Beat, written by IBM Research, doesn’t need a huge database of music like
the Google Magenta and Flow Machines projects, since it uses
Reinforcement Learning and Deep Belief Networks to compose music on
a simple seed input melody and a select style. Since the software has been
open sourced musicians, such as Taryn Southern have been collaborating
with the project to create music.

News, publishing and writing

The company Narrative Science makes computer-generated news and
reports commercially available, including summarizing team sporting
events based on statistical data from the game in English. It also creates
financial reports and real estate analyses. Similarly, the company Automated
Insights generates personalized recaps and previews for Yahoo Sports
Fantasy Football. The company is projected to generate one billion stories
in 2014, up from 350 million in 2013. The organisation OpenAI has also
created an AI capable of writing text.

Echobox is a software company that helps publishers increase traffic
by ‘intelligently’ posting articles on social media platforms such as Facebook
and Twitter. By analysing large amounts of data, it learns how specific
audiences respond to different articles at different times of the day. It then
chooses the best stories to post and the best times to post them. It uses
both historical and real-time data to understand to what has worked well
in the past as well as what is currently trending on the web.

Another company, called Yseop, uses artificial intelligence to turn
structured data into intelligent comments and recommendations in natural
language. Yseop is able to write financial reports, executive summaries,
personalized sales or marketing documents and more at a speed of
thousands of pages per second and in multiple languages including English,
Spanish, French & German.

Boomtrain’s is another example of AI that is designed to learn how

116 Artificial Intelligence : Making a System Intelligent

to best engage each individual reader with the exact articles—sent through
the right channel at the right time—that will be most relevant to the reader.
It’s like hiring a personal editor for each individual reader to curate the
perfect reading experience.

IRIS.TV is helping media companies with its AI-powered video
personalization and programming platform. It allows publishers and
content owners to surface contextually relevant content to audiences based
on consumer viewing patterns.

Beyond automation of writing tasks given data input, AI has shown
significant potential for computers to engage in higher-level creative work.

AI Storytelling has been an active field of research since James Meehan’s
development of TALESPIN, which made up stories similar to the fables
of Aesop. The program would start with a set of characters who wanted
to achieve certain goals, with the story as a narration of the characters’
attempts at executing plans to satisfy these goals.

Since Meehan, other researchers have worked on AI Storytelling using
similar or different approaches. Mark Riedl and Vadim Bulitko argued that
the essence of storytelling was an experience management problem, or
‚how to balance the need for a coherent story progression with user
agency, which are often at odds.‛

While most research on AI storytelling has focused on story generation

(e.g. character and plot), there has also been significant investigation in

story communication.

In 2002, researchers at North Carolina State University developed an
architectural framework for narrative prose generation. Their particular
implementation was able faithfully reproduced text variety and complexity
of a number of stories, such as red riding hood, with human-like adroitness.
This particular field continues to gain interest. In 2016, a Japanese AI co-
wrote a short story and almost won a literary prize.

INTELLIGENT AGENTS: CHARACTERISTICS AND

APPLICATIONS | AI

Meaning of Intelligent Agents

Intelligent Agents (IA) are software programs which represent a new
technology with the potential to become one of the most important tools
of information technology in the twenty-first century. IA can alleviate the

Applications of Artificial Intelligence 117

most critical limitation of the Internet- information overflow, and can

facilitate electronic commerce. Before we look at its capabilities.

Several names are used to describe intelligent agents- software agents,
wizards, knowbots and softbots. The names tend to reflect the nature of
the agent; the term agent is derived from the concept of agency, which
means employing someone to act on the behalf of the user. A computerised
agent represents a person and interacts with others to accomplish a
predefined task.

A good working definition is this: An intelligent agent is a software
entity which senses its environment and then carries out some set of
operations on behalf of a user (or a program), with some degree of autonomy,
and in so doing employs some knowledge or representation of the user’s
goals or desires or in other words IA are software programs which work
in the background to carry out specific, repetitive, predictable tasks for an
individual user, business processor software application.

Characteristics and Applications of Intelligent Agents

Several traits or abilities exist which many people think of when they
are discussing about intelligent agents:

a. Capability to work on their own (autonomy)

b. Exhibition of goal-oriented behaviour

c. Transportable over networks (mobility)

d. Dedication to a single repetitive task

e. Ability to interact with humans, systems, and other agents

f. Inclusion of a knowledge base

g. Ability to learn

Although not all intelligent agents have all of these capabilities, they

are very useful in facilitating some tasks such as:

1. Information Access and Navigation: Information access is today’s
major application of intelligent agents, and it is done by use of
different search engines.

2. Decision Support and Empowerment: Knowledge workers need
support, especially in decision-making.

3. Repetitive Office Activities: There is a pressing need to automate
tasks performed by administrative and clerical personnel in
functional areas, such as sales or customer support, in order to
reduce labour costs and increase office productivity. Today, labour

118 Artificial Intelligence : Making a System Intelligent

costs are estimated to be as much as 60 percent of the total cost of

information delivery.

4. Mundane Personal Activities: In our fast-paced society, time-strapped
individuals need new ways to minimise the time spent on routine
personal tasks like booking airline tickets. One specific form of
intelligent agents is, the voice- activated interface agent which
reduces the burden on the user of having to explicitly command
the computer.

5. Search and Retrieval: It is not possible to directly manipulate a
distributed database system in a business setting which involves
millions of data objects. Users have to delegate the task of searching
and cost comparison to agents. These agents perform the tedious,
time-consuming, and repetitive tasks of searching databases,
retrieving and filtering information, and delivering results to the
user.

6. Domain Experts: It is advisable to model costly expertise and make
it widely available. ‚Expert‛ software agents could be models of
real-world agents, such as translators, lawyers, diplomats, union
negotiators, stock-brokers, and even clergy.

7. Management Activities: Intelligent agents can even be used to assist
managers in performing their activities. Some management-oriented
tasks which an agent can do: advise, alert, broadcast, browse, critique,
distribute, enlist, empower, explain, filter, guide, identify, match,
monitor, navigate, negotiate, organize, present, query, report,
remind, retrieve, schedule, search, secure, solicit, store, suggest,
summaries, reach, translate and watch.

For example, the wizards found in Microsoft Office software tools
have built-in capabilities to show users how to accomplish various tasks,
such as formatting documents or a creating graphs, and to anticipate when
users need assistance.

At the Almade Research Centre of IBM an IA works which facilitates
the learning process for computer programmers who are learning the
programming language LISP. COACH (Cognitive Adaptive Computer
Help) contains three knowledge components which enable it to function.

One component compiles information about the user’s LISP capabilities,
including the frequent mistakes. Another component maintains information
about LISP itself and the final component stores strategies for coaching.
COACH ensures that students of LISP receive a lot more through learning

Applications of Artificial Intelligence 119

experience than they would otherwise. Of special interest are intelligent
agents used to cruise networks, including the Internet, in search of
information AT & T pioneered in this area with its Personal Link service.
Personal Link used an object-oriented remote programming language
called Telescript from California’s General Magic Inc. to establish an
environment for e-mail, on-line news and an electronic market place.

The Cambridge, Massachusetts USA Company, Agents Inc., sells an
agent which caters to consumers on the Internet. Users send critiques of
movies and music to Agents’ website, Firefly. When they want to select
a new movie or buy a CD, they can supply data on their personal favourites
and Firefly will produce a list of similar items based on the critiques.

THE ROOTS OF ARTIFICIAL INTELLIGENCE

The postindustrial society will be fueled not by oil but by a new
commodity called artificial intelligence (AI). We might regard it as a
commodity because it has value and can be traded. Indeed, as will be made
clear, the knowledge imbedded in AI software and hardware architectures
will become even more salient as a foundation of wealth than the raw
materials that fueled the first Industrial Revolution. It is an unusual
commodity, because it has no material form. It can be a flow of information
with no more physical reality than electrical vibrations in a wire.

If artificial intelligence is the fuel of the second industrial revolution,
then we might ask what it is. One of the difficulties in addressing this issue
is the amount of confusion and disagreement regarding the definition of
the field. Other fields do not seem to have this problem. Books on biology
do not generally begin with the question, What is biology, anyway?
Predicting the future is always problematic, but it will be helpful if we
attempt to define what it is we are predicting the future of. One view is
that AI is an attempt to answer a central question that has been debated
by scientists, philosophers, and theologians for thousands of years. How
does the human brain-three pounds of ‚ordinary‛ matter-give rise to
thoughts, feelings, and consciousness? While certainly very complex, our
brains are clearly governed by the same physical laws as our machines.
Viewed in this way, the human brain may be regarded as a very capable
machine. Conversely, given sufficient capacity and the right techniques,
our machines may ultimately be able to replicate human intelligence.
Some philosophers and even a few AI scientists are offended by this
characterization of the human mind as a machine, albeit an immensely

120 Artificial Intelligence : Making a System Intelligent

complicated one. Others find the view inspiring: it means that we will
ultimately be able to understand our minds and how they work. One does
not need to accept fully the notion that the human mind is ‚just‛ a machine
to appreciate both the potential for machines to master many of our
intellectual capabilities and the practical implications of doing so.

The Usual Definition

Artificial Stupidity (AS) may be defined as the attempt by computer scientists

to create computer programs capable of causing problems of a type normally

associated with human thought.

- Wallace Marshal, Journal of Irreproducible Results (1987)

Probably the most durable definition of artificial intelligence, and the
one most often quoted, states that: ‚Artificial Intelligence is the art of
creating machines that perform functions that require intelligence when
performed by people.‛ It is reasonable enough as definitions go, although
it suffers from two problems. First, it does not say a great deal beyond the
words ‚artificial intelligence.‛ The definition refers to machines and that
takes care of the word ‚artificial.‛ There is no problem here: we have never
had much difficulty defining artificial. For the more problematic word
‚intelligence‛ the definition provides only a circular definition: an intelligent
machine does what an intelligent person does.

A more serious problem is that the definition does not appear to fit
actual usage. Few AI researchers refer to the chess-playing machines that
one can buy in the local drug store as examples of true artificial intelligence,
yet chess is still considered an intellectual game. Some equation-
manipulation packages perform transformations that would challenge most
college students. We consider these to be quite useful packages, but again,
they are rarely pointed to as examples of artificial intelligence.

The Moving Frontier Definition

Mr. Jabez Wilson laughed heavily. ‚Well, I never!‛ said he. ‚I thought at
first that you had done something clever, but I see that there was nothing in it,

after all?‛ ‚I began to think, Watson,‛ said Holmes, ‚that I made a mistake in
explaining. ‘Omne ignatum pro magnifico,’ you know, and my poor little reputation,

such as it is, will suffer shipwreck if I am so candid.‛

- Sir Arthur Conan Doyle, The Complete Sherlock Holmes

‚The extent to which we regard something as behaving in an intelligent
manner is determined as much by our own state of mind and training as by the

Applications of Artificial Intelligence 121

properties of the object under consideration. If we are able to explain and predict

its behavior or if there seems to be little underlying plan, we have little temptation

to imagine intelligence. With the same object, therefore, it is possible that one man

would consider it as intelligent and another would not; the second man would

have found out the rules of its behavior.‛

- Alan Turing (1947)

‚AI is the study of how to make computers do things at which, at the moment,

people are better.‛

- Elaine Rich

This leads us to another approach, which I like to call the ‚moving
frontier‛ definition: artificial intelligence is the study of computer problems
that have not yet been solved. This definition, which Marvin Minsky has
been advocating since the 1960s, is unlike those found in other fields. A
gene-splicing technique does not stop being part of bioengineering the
moment it is perfected. Yet, if we examine the shifting judgments as to
what has qualified as ‚true artificial intelligence‛ over the years, we find
this definition has more validity than one might expect.

When the artificial intelligence field was first named at a now famous
conference held in 1956 at Dartmouth College, programs that could play
chess or checkers or manipulate equations, even at crude levels of
performance, were very much in the mainstream of AI. As I noted above,
we no longer consider such gameplaying programs to be prime examples
of AI, although perhaps we should.

One might say that this change in perception simply reflects a tightening
of standards. I feel that there is something more profound going on. We
are of two minds when it comes to thinking. On the one hand, there is
the faith in the AI community that most definable problems can be solved,
often by successively breaking them down into hierarchies of simpler
problems. While some problems will take longer to solve than others, we
presently have no clear limit to what can be achieved.

On the other hand, coexisting with the faith that most cognitive
problems can be solved is the feeling that thinking or true intelligence is
not an automatic technique. In other words, there is something in the
concept of thinking that goes beyond the automatic opening and closing
of switches. Thus, when a method has been perfected in a computerized
system, we see it as just another useful technique, not as an example of
true artificial intelligence. We know exactly how the system works, so it
does not seem fundamentally different from any other computer program.

122 Artificial Intelligence : Making a System Intelligent

A problem that has not yet been solved, on the other hand, retains its
mystique. While we may have confidence that such a problem will
eventually be solved, we do not yet know its solution. So we do not yet
think of it as just an automatic technique and thus allow ourselves to view
it as true cybernetic cognition. Consider as a current example the area of
artificial intelligence known as expert systems. Such a system consists of
a data base of facts about a particular discipline, a knowledge base of codified
rules for drawing inferences from the data base, and a high-speed inference

engine for systematically applying the rules to the facts to solve problems.
Such systems have been successfully used to locate fuel deposits, design
and assemble complex computer systems, analyze electronic circuits, and
diagnose diseases. The judgments of expert systems are beginning to rival
those of human experts, at least within certain well-defined areas of
expertise.

Today expert systems are widely regarded as a central part of artificial
intelligence, and hundreds of projects exist today to apply this set of
techniques to dozens of fields. It seems likely that expert systems will
become within the next ten years as widespread as computer spreadsheet
programs and data-base management systems are today. I predict that
when this happens, AI researchers will shift their attention to other issues,
and we will no longer consider expert systems to be prime examples of
AI technology. They will probably be regarded as just obvious extensions
of data-base-management techniques.

Roger Schank uses the example of a pool sweep, a robot pool cleaner,
to illustrate our tendency to view an automatic procedure as not intelligent.
When we first see a pool sweep mysteriously weaving its way around the
bottom of a pool, we are impressed with its apparent intelligence in
systematically finding its way around.

When we figure out the method or pattern behind its movements,
which is a deceptively simple algorithm of making preprogrammed changes
in direction every time it encounters a wall of the pool, we realize that
it is not very intelligent after all.

Another example is a computer program named ELIZA designed in
1966 by Joseph Weizenbaum to simulate a psychotherapist. When
interacting with ELIZA, users type statements about themselves and ELIZA
responds with questions and comments. Many persons have been impressed
with the apparent appropriateness and insight of ELIZA’s ability to engage
in psychoanalytic dialog. Those users who have been given the opportunity

Applications of Artificial Intelligence 123

to examine ELIZA’s algorithms have been even more impressed at how
simple some of its methods are.

We often respond to people the same way. When we figure out how

an expert operates and understand his or her methods and rules of thumb,

what once seemed very intelligent somehow seems less so.

It will be interesting to see what our reaction will be when a computer
takes the world chess championship. Playing a master game of chess is
often considered an example of high intellectual (even creative)
achievement. When a computer does become the chess champion, which
I believe will happen before the end of the century, we will either think
more of computers, less of ourselves, or less of chess.

Our ambivalence on the issue of the ability of a machine to truly
emulate human thought tends to regard a workingsystem as possibly useful
but not truly intelligent. Computer-science problems are only AI problems
until they are solved. This could be seen to be a frustrating state of affairs.
As with the carrot on a stick, the AI practitioner can never quite achieve
the goal.

ANTICIPATORY SOCIALIZATION AND INTELLIGENCE

ANALYSIS

Every organization has a unique culture that is defined partly by its
individual members and partly by its structure, history, and policies. For
that culture to endure, it must be transmitted from current members to
new members. This process, known as organizational socialization, is
especially important in organizations with strong, insular cultures, as
those with weak cultures have less to transmit and will tend to experience
culture changes as members come and go.

Although socialization begins prior to a person’s first day on the job
and is a continuous process, it is experienced most intensely by new
employees. The cultural symbols acquired and interpreted during their
initial interaction with the institution create potent and lasting impressions.

For them, socialization is the process of learning the ropes; training;
and becoming formally and informally acquainted with what is actually
of value within the organization.

It is also the time when one learns the organization’s norms and
taboos and the extent of its social capital. In sum, formal and informal
socialization are types of control mechanism for maintaining the norms,
or status quo, within any organization.

124 Artificial Intelligence : Making a System Intelligent

Organizational Socialization

According to Daniel Feldman, organizational socialization is ‚the
process through which individuals are transformed from outsiders to
participating, effective members of an organization.‛ Feldman divides this
process into three stages: getting in (or anticipatory socialization), breaking
in (or accommodation), and settling in (often referred to as role
management). During the getting-in stage, potential employees try to
acquire information about an organization from available sources, such as
Web sites, professional journals, and corporate annual reports. The breaking-
in stage includes orientation and learning organizational as well as job-
related procedures. The settling-in stage concludes when an individual
attains full member status in the organization.

While each of the three stages of socialization is important, the focus
of this chapter is on the first, or anticipatory, stage. There are several
reasons for this. Clearly, the expectations people develop about an
organization they are joining are important to a new recruit’s eventual
satisfaction, retention, and performance. Moreover, because it can control
several aspects of the recruitment process, this stage is often the easiest
for an organization to change. This chapter will take both a descriptive
and prescriptive approach to easing the socialization of new employees.

Anticipatory Socialization

Anticipatory socialization encompasses all of the learning that occurs
prior to a recruit’s entering on duty. At this stage, an individual forms
expectations about the job and makes decisions about the suitability of fit
between himself and the organization. What a person has heard about
working for a particular organization, such as an intelligence agency,
provides an idea of what to expect if hired. Conversely, individuals who
do not believe they would fit in may decide not to apply.

There are two variables that are particularly useful for tracking a
potential employee’s progress through the anticipatory stage: The first is
realism, or the extent to which an individual acquires an accurate picture
of daily life in the organization. Realism is influenced by the level of
success recruits achieve during the information-sharing and information-
evaluation part of their recruitment. The second is congruence, or the extent
to which the organization’s resources and the individual’s needs and skills
are mutually satisfying. Congruence is influenced by the level of success
an individual has achieved in making decisions about employment.

Applications of Artificial Intelligence 125

Although it cannot directly influence congruence, which is an inherently
personal experience, an organization can present relevant information in
order to provide a realistic and accurate description of the work performed
and the work environment.

Organizations often use interviews to begin the socialization of new
recruits. For example, an interviewer will attempt to provide an accurate
description of what to expect from the job and the organization, the
purpose being to reduce the likelihood that a recruit will be disturbed by
unanticipated situations. Interviewing is also used to determine the degree
to which there is a match between the values of potential recruits and the
values of the organization. New recruits with personal values matching
those of the organization have been found to adjust to the organization’s
culture more quickly than recruits with nonmatching values.

Organizations also send cultural messages to new recruits during
interviews. When there are several rounds of interviews with progressively
senior members of the organization, for example, the message conveyed
is that finding the best person for the position is important. In contrast,
hiring for a part-time job at the lowest level of the organization is often
accomplished quickly, to the extent that a person having minimally
acceptable qualifications may often be hired on the spot. The cultural
message in this case is that such employees are easily let in to and out of
the organization.

Another, particularly pertinent example is intelligence work, which
requires that recruits undergo employment screenings unlike those found
in most civilian jobs. Potential CIA analysts must submit to a thorough
background investigation, a polygraph examination, and financial and
credit reviews. Further, a battery of psychological and medical exams must
be passed prior to a formal employment offer. The timeframe for the
background check eliminates the possibility of a rapid hiring decision.
Even more important are the nonverbal messages sent to the recruit that
this is a position of secrecy and high importance.

Several sources of information contribute to beliefs about any
organization. Friends or relatives who are already part of the organization
might share their experiences with the person considering employment.
Information might also be acquired from other sources, such as professional
journals, magazines, newspaper articles, television, governmental and
private Web sites, public statements or testimony, and annual reports.
While these sources of information about an organization are far from

126 Artificial Intelligence : Making a System Intelligent

perfect (all may contain positive and negative hyperbole), they are still
useful from the point of view of forming preliminary ideas about what
it might be like to work for that organization.

Because competition for highly qualified employees is fierce, successful
recruitment usually involves a skillful combination of salesmanship and
diplomacy. Recruiters tend to describe their organizations in glowing
terms, glossing over internal problems and external threats, while
emphasizing positive features. The result is that potential employees often
receive unrealistically positive impressions of conditions prevailing in a
specific organization. When they arrive on the job and find that their
expectations are not met, they experience disappointment, dissatisfaction,
and even resentment that they have been misled. In fact, research findings
indicate that the less employees’ job expectations are met, the less satisfied
and committed they are and the more likely they are to think about
quitting or actually to do so.

These negative reactions are sometimes termed entry shock, referring
to the confusion and disorientation experienced by many newcomers to
an organization. In order to avoid entry shock, it is important for
organizations to provide job candidates with accurate information about
the organization. Research supports the notion that people exposed to
realistic job previews later report higher satisfaction and show lower
turnover than those who receive glowing, but often misleading, information
about their companies. Moreover, having realistic expectations helps to
ease the accommodation stage of the socialization process.

Consequences of Culture Mismatch

There are several consequences of a cultural mismatch between an
employee and an organization. Among these consequences are culture
shock, low job satisfaction, low employee morale, increased absenteeism,
increased turnover, and increased costs.

Culture Shock. People often have to be confronted with different cultures
before they become conscious of their own culture. In fact, when people
are faced with new cultures, it is not unusual for them to become confused
and disoriented, a phenomenon commonly referred to as culture shock.

Beryl Hesketh and Stephen Bochner, among others, have observed
that the process of adjusting to another culture generally follows a U-
shaped curve. At first, people are optimistic about learning a new culture.
This excitement is followed by frustration and confusion as they struggle
to learn the new culture. After six months or so with the organization,

Applications of Artificial Intelligence 127

people adjust to their new cultures, become more accepting of them, and
are more satisfied by them. For those who enter a mismatched culture, the
productivity issue is clear: the several months required to adjust and
accept the new work style results in several months of even lower
productivity than is obtainable with those who fit in right away.

Job Satisfaction. Job satisfaction is defined by one scholar as ‚people’s
positive or negative feelings about their jobs.‛ It is hardly surprising that
dissatisfied employees may try to find ways of reducing their exposure
to their jobs. This is especially significant when one considers that people
spend roughly one-third of their lives at work.

Interestingly, research suggests that the relationship between
satisfaction and task performance, although positive, is not especially
strong. Thus, while job satisfaction may be important to the longevity of
any individual career cycle, it is not a major factor in individual job
performance. It does, however, increase absenteeism, which has a negative
effect on overall organizational productivity.

Absenteeism and Turnover. Research indicates that the lower an
individual’s job satisfaction, the more likely he or she is to be absent from
work. As with job satisfaction and task performance, this relationship is
modest but also statistically significant. An employee may even choose to
leave an organization altogether. This voluntary resignation is measured
as employee turnover and has fiscal consequences for both the individual
and the organization.

Fiscal Cost. Employee turnover is a critical cost element. The expense
of recruiting and training new employees, along with lost productivity
from vacant positions and overtime pay for replacement workers, increases
operating costs and also reduces employee organizational output.

A 2002 study by the Employment Policy Foundation found that the
estimated turnover cost is $12,506 per year per full-time vacancy for the
average employee with total compensation (wages and benefits) of $50,025.
As the average annual turnover benchmark within the Fortune 500 is 23.8
percent, one can clearly see how critical it is for organizations to lessen
the number of employees who leave voluntarily. Even unscheduled absences
can be expensive—averaging between $247 and $534 per employee, per
day, according to the same study.

Anticipatory Socialization in the Intelligence Community

Accepting a job with one of the 14 members of the Intelligence
Community differs from other professions in that it is difficult for new

128 Artificial Intelligence : Making a System Intelligent

employees to have a clear and precise understanding of the roles and
responsibilities they are about to assume. This is all the more pronounced
because, for the most part, the Intelligence Community organizations lack
a civilian counterpart.

Occasionally, the anticipatory socialization of people entering the
intelligence analysis discipline will derive from accounts of current or
former practitioners. More generally, however, a newcomer’s initial
impressions stem from the fictional media portrayals, which tend to
emphasize the supposed glamour of operational tasks and pay little
attention to the reality of research-based analytic work. The absence of
hard knowledge about intelligence work is attributable, in part, to the
organizational secrecy of the Intelligence Community and, in part, to the
actual socialization process that occurs after one has been accepted for
employment and has passed the required background investigation.

A newcomer’s experience is often contrary to initial expectations.
Employees are discouraged from talking about the specifics of their work
outside of the organization or with those who have not been ‚cleared.‛
On an individual level, this experience translates into professional culture
shock and social isolation. Organizationally, an intentionally closed system
of this kind has a number of potential performance-related consequences,
among them perpetuation of the existing organizational culture by hiring
familial legacies or those most likely to ‚fit in,‛ job dissatisfaction, low
morale and consequent reduction in employee readiness, increased
employee turnover, greater likelihood of ‚groupthink,‛ and strong internal
resistance to organizational change.

Since the attacks of 11 September, the Intelligence Community has
become more open about its role in government, its day-to-day working
environment, and its employees’ functions and responsibilities. While this
openness is an extension of an ongoing trend towards public outreach—
an example is the CIA’s Officer-in-Residence programme established in
1985—the community has accelerated this trend towards openness in an
effort to help the public, and its representatives, understand the missions
and value of the Intelligence Community.

RECONFIGURABLE COMPUTING

Reconfigurable computing is a computer architecture combining some
of the flexibility of software with the high performance of hardware by
processing with very flexible high speed computing fabrics like field-

Applications of Artificial Intelligence 129

programmable gate arrays (FPGAs). The principal difference when
compared to using ordinary microprocessors is the ability to make
substantial changes to the datapath itself in addition to the control flow.
On the other hand, the main difference with custom hardware, i.e.
application-specific integrated circuits (ASICs) is the possibility to adapt
the hardware during runtime by ‚loading‛ a new circuit on the
reconfigurable fabric. The concept of reconfigurable computing has existed
since the 1960s, when Gerald Estrin’s paper proposed the concept of a
computer made of a standard processor and an array of ‚reconfigurable‛
hardware. The main processor would control the behavior of the
reconfigurable hardware. The latter would then be tailored to perform a
specific task, such as image processing or pattern matching, as quickly as
a dedicated piece of hardware. Once the task was done, the hardware
could be adjusted to do some other task. This resulted in a hybrid computer
structure combining the flexibility of software with the speed of hardware.

In the 1980s and 1990s there was a renaissance in this area of research
with many proposed reconfigurable architectures developed in industry
and academia, such as: Copacobana, Matrix, GARP, Elixent, NGEN, Polyp,
MereGen, PACT XPP, Silicon Hive, Montium, Pleiades, Morphosys, and
PiCoGA. Such designs were feasible due to the constant progress of silicon
technology that let complex designs be implemented on one chip. Some of
the these massively parallel reconfigurable computers were built primarily
for special subdomains such as molecular evolution, neural or image
processing. The world’s first commercial reconfigurable computer, the
Algotronix CHS2X4, was completed in 1991. It was not a commercial success,
but was promising enough that Xilinx (the inventor of the Field-
Programmable Gate Array, FPGA) bought the technology and hired the
Algotronix staff. Later machines enabled first demonstrations of scientific
principles, such as the spontaneous spatial self-organisation of genetic coding
with MereGen.

Theories

Tredennick’s Classification

The fundamental model of the reconfigurable computing machine
paradigm, the data-stream-based anti machine is well illustrated by the
differences to other machine paradigms that were introduced earlier, as
shown by Nick Tredennick’s following classification scheme of computing
paradigms

130 Artificial Intelligence : Making a System Intelligent

Hartenstein’s Xputer

Computer scientist Reiner Hartenstein describes reconfigurable
computing in terms of an anti-machine that, according to him, represents
a fundamental paradigm shift away from the more conventional von
Neumann machine.

Hartenstein calls it Reconfigurable Computing Paradox, that software-
to-configware (software-to-FPGA) migration results in reported speed-up
factors of up to more than four orders of magnitude, as well as a reduction
in electricity consumption by up to almost four orders of magnitude—
although the technological parameters of FPGAs are behind the Gordon
Moore curve by about four orders of magnitude, and the clock frequency
is substantially lower than that of microprocessors. This paradox is partly
explained by the Von Neumann syndrome.

High-performance Computing

High-Performance Reconfigurable Computing (HPRC) is a computer
architecture combining reconfigurable computing-based accelerators like
field-programmable gate array with CPUs or multi-core processors. The
increase of logic in an FPGA has enabled larger and more complex
algorithms to be programmed into the FPGA. The attachment of such an
FPGA to a modern CPU over a high speed bus, like PCI express, has
enabled the configurable logic to act more like a coprocessor rather than
a peripheral. This has brought reconfigurable computing into the high-
performance computing sphere.

Furthermore, by replicating an algorithm on an FPGA or the use of
a multiplicity of FPGAs has enabled reconfigurable SIMD systems to be
produced where several computational devices can concurrently operate
on different data, which is highly parallel computing. This heterogeneous
systems technique is used in computing research and especially in
supercomputing. A 2008 paper reported speed-up factors of more than 4
orders of magnitude and energy saving factors by up to almost 4 orders
of magnitude. Some supercomputer firms offer heterogeneous processing
blocks including FPGAs as accelerators. One research area is the twin-
paradigm programming tool flow productivity obtained for such
heterogeneous systems.

The US National Science Foundation has a center for high-performance
reconfigurable computing (CHREC). In April 2011 the fourth Many-core
and Reconfigurable Supercomputing Conference was held in Europe.

Applications of Artificial Intelligence 131

Commercial high-performance reconfigurable computing systems are
beginning to emerge with the announcement of IBM integrating FPGAs
with its POWER processor.

Partial re-configuration

Partial re-configuration is the process of changing a portion of
reconfigurable hardware circuitry while the other part is still running/
operating. Field programmable gate arrays are often used as a support
to partial reconfiguration. Electronic hardware, like software, can be
designed modularly, by creating subcomponents and then higher-level
components to instantiate them. In many cases it is useful to be able to
swap out one or several of these subcomponents while the FPGA is still
operating.

Normally, reconfiguring an FPGA requires it to be held in reset while
an external controller reloads a design onto it. Partial reconfiguration
allows for critical parts of the design to continue operating while a controller
either on the FPGA or off of it loads a partial design into a reconfigurable
module. Partial reconfiguration also can be used to save space for multiple
designs by only storing the partial designs that change between designs.

A common example for when partial reconfiguration would be useful
is the case of a communication device. If the device is controlling multiple
connections, some of which require encryption, it would be useful to be
able to load different encryption cores without bringing the whole controller
down.

Partial reconfiguration is not supported on all FPGAs. A special
software flow with emphasis on modular design is required. Typically the
design modules are built along well defined boundaries inside the FPGA
that require the design to be specially mapped to the internal hardware.

From the functionality of the design, partial reconfiguration can be divided

into two groups:

• Dynamic partial reconfiguration, also known as an active partial
reconfiguration - permits to change the part of the device while the
rest of an FPGA is still running;

• Static partial reconfiguration - the device is not active during the
reconfiguration process. While the partial data is sent into the
FPGA, the rest of the device is stopped (in the shutdown mode) and
brought up after the configuration is completed.

132 Artificial Intelligence : Making a System Intelligent

Current systems

Computer Emulation

With the advent of affordable FPGA boards, students’ and hobbyists’
projects seek to recreate vintage computers or implement more novel
architectures. Such projects are built with reconfigurable hardware (FPGAs),
and some devices support emulation of multiple vintage computers using
a single reconfigurable hardware (C-One).

COPACOBANA

A fully FPGA-based computer is the COPACOBANA, the Cost
Optimized Codebreaker and Analyzer and its successor RIVYERA. A spin-
off company SciEngines GmbH of the COPACOBANA-Project of the
Universities of Bochum and Kiel in Germany continues the development
of fully FPGA-based computers.

Mitrionics

Mitrionics has developed a SDK that enables software written using
a single assignment language to be compiled and executed on FPGA-based
computers. The Mitrion-C software language and Mitrion processor enable
software developers to write and execute applications on FPGA-based
computers in the same manner as with other computing technologies, such
as graphical processing units (‚GPUs‛), cell-based processors, parallel
processing units (‚PPUs‛), multi-core CPUs, and traditional single-core
CPU clusters. (out of business)

National Instruments

National Instruments have developed a hybrid embedded computing
system called CompactRIO. It consists of reconfigurable chassis housing
the user-programmable FPGA, hot swappable I/O modules, real-time
controller for deterministic communication and processing, and graphical
LabVIEW software for rapid RT and FPGA programming.

Xilinx

Xilinx has developed two styles of partial reconfiguration of FPGA
devices: module-based and difference-based. Module-based partial reconfiguration

permits to reconfigure distinct modular parts of the design, while difference-

based partial reconfiguration can be used when a small change is made to
a design.

Applications of Artificial Intelligence 133

Intel

Intel supports partial reconfiguration of their FPGA devices on 28 nm
devices such as Stratix V, and on the 20 nm Arria 10 devices. The Intel
FPGA partial reconfiguration flow for Arria 10 is based on the hierarchical
design methodology in the Quartus Prime Pro software where users create
physical partitions of the FPGA that can be reconfigured at runtime while
the remainder of the design continues to operate. The Quartus Prime Pro
software also support hierarchical partial reconfiguration and simulation
of partial reconfiguration.

Comparison of systems

As an emerging field, classifications of reconfigurable architectures
are still being developed and refined as new architectures are developed;
no unifying taxonomy has been suggested to date. However, several
recurring parameters can be used to classify these systems.

Granularity

The granularity of the reconfigurable logic is defined as the size of
the smallest functional unit (configurable logic block, CLB) that is addressed
by the mapping tools. High granularity, which can also be known as fine-
grained, often implies a greater flexibility when implementing algorithms
into the hardware. However, there is a penalty associated with this in
terms of increased power, area and delay due to greater quantity of routing
required per computation. Fine-grained architectures work at the bit-level
manipulation level; whilst coarse grained processing elements
(reconfigurable datapath unit, rDPU) are better optimised for standard
data path applications. One of the drawbacks of coarse grained architectures
are that they tend to lose some of their utilisation and performance if they
need to perform smaller computations than their granularity provides, for
example for a one bit add on a four bit wide functional unit would waste
three bits. This problem can be solved by having a coarse grain array
(reconfigurable datapath array, rDPA) and a FPGA on the same chip.

Coarse-grained architectures (rDPA) are intended for the
implementation for algorithms needing word-width data paths (rDPU).
As their functional blocks are optimized for large computations and typically
comprise word wide arithmetic logic units (ALU), they will perform these
computations more quickly and with more power efficiency than a set of
interconnected smaller functional units; this is due to the connecting wires

134 Artificial Intelligence : Making a System Intelligent

being shorter, resulting in less wire capacitance and hence faster and lower
power designs. A potential undesirable consequence of having larger
computational blocks is that when the size of operands may not match the
algorithm an inefficient utilisation of resources can result. Often the type
of applications to be run are known in advance allowing the logic, memory
and routing resources to be tailored to enhance the performance of the
device whilst still providing a certain level of flexibility for future adaptation.
Examples of this are domain specific arrays aimed at gaining better
performance in terms of power, area, throughput than their more generic
finer grained FPGA cousins by reducing their flexibility.

Rate of Reconfiguration

Configuration of these reconfigurable systems can happen at deployment
time, between execution phases or during execution. In a typical
reconfigurable system, a bit stream is used to program the device at
deployment time. Fine grained systems by their own nature require greater
configuration time than more coarse-grained architectures due to more
elements needing to be addressed and programmed. Therefore, more coarse-
grained architectures gain from potential lower energy requirements, as less
information is transferred and utilised. Intuitively, the slower the rate of
reconfiguration the smaller the energy consumption as the associated energy
cost of reconfiguration are amortised over a longer period of time. Partial
re-configuration aims to allow part of the device to be reprogrammed while
another part is still performing active computation. Partial re-configuration
allows smaller reconfigurable bit streams thus not wasting energy on
transmitting redundant information in the bit stream. Compression of the
bit stream is possible but careful analysis is to be carried out to ensure that
the energy saved by using smaller bit streams is not outweighed by the
computation needed to decompress the data.

Host Coupling

Often the reconfigurable array is used as a processing accelerator
attached to a host processor. The level of coupling determines the type of
data transfers, latency, power, throughput and overheads involved when
utilising the reconfigurable logic. Some of the most intuitive designs use
a peripheral bus to provide a coprocessor like arrangement for the
reconfigurable array. However, there have also been implementations where
the reconfigurable fabric is much closer to the processor, some are even
implemented into the data path, utilising the processor registers. The job

Applications of Artificial Intelligence 135

of the host processor is to perform the control functions, configure the

logic, schedule data and to provide external interfacing.

Routing/interconnects

The flexibility in reconfigurable devices mainly comes from their
routing interconnect. One style of interconnect made popular by FPGAs
vendors, Xilinx and Altera are the island style layout, where blocks are
arranged in an array with vertical and horizontal routing. A layout with
inadequate routing may suffer from poor flexibility and resource utilisation,
therefore providing limited performance. If too much interconnect is
provided this requires more transistors than necessary and thus more
silicon area, longer wires and more power consumption.

REACTION, PROACTION AND ANTICIPATION

Elementary forms of artificial intelligence can be constructed using a
policy based on simple if-then rules. An example of such a system would
be an agent following the rules

If it rains outside,

take the umbrella.

Otherwise

leave the umbrella home

A system such as the one defined above might be viewed as inherently
reactive because the decision making is based on the current state of the
environment with no explicit regard to the future. An agent employing
anticipation would try to predict the future state of the environment
(weather in this case) and make use of the predictions in the decision
making. For example:

If the sky is cloudy and the air pressure is low,

it will probably rain soon

so take the umbrella with you.

Otherwise

leave the umbrella home.

These rules appear more proactive, because they explicitly take into
account possible future events. Notice though that in terms of representation
and reasoning, these two rule sets are identical, both behave in response
to existing conditions. Note too that both systems assume the agent is
proactively

leaving the house, and

trying to stay dry.

136 Artificial Intelligence : Making a System Intelligent

In practice, systems incorporating reactive planning tend to be
autonomous systems proactively pursuing at least one, and often many,
goals. What defines anticipation in an AI model is the explicit existence
of an inner model of the environment for the anticipatory system (sometimes
including the system itself). For example, if the phrase it will probably rain

were computed on line in real time, the system would be seen as anticipatory.

In 1985, Robert Rosen defined an anticipatory system as follows:

A system containing a predictive model of itself and/or its environment,

which allows it to change state at an instant in accord with the model’s
predictions pertaining to a later instant.

In Rosen’s work, analysis of the example: ‚It’s raining outside, therefore
take the umbrella‛ does involve a prediction. It involves the prediction
that ‚If it is raining, I will get wet out there unless I have my umbrella‛.
In that sense, even though it is already raining outside, the decision to take
an umbrella is not a purely reactive thing. It involves the use of predictive
models which tell us what will happen if we don’t take the umbrella, when
it is already raining outside.

To some extent, Rosen’s definition of anticipation applies to any system
incorporating machine learning. At issue is how much of a system’s
behaviour should or indeed can be determined by reasoning over dedicated
representations, how much by on-line planning, and how much must be
provided by the system’s designers.

ANTICIPATION IN EVOLUTION AND COGNITION

The anticipation of future states is also a major evolutionary and
cognitive advance. Anticipatory agents belonging to Rosen’s definition are
easy to see in human mental capabilities of taking decisions at a certain
time T taking into account the effects of their own actions at different
future timescales T+k. However, Rosen (a theoretical biologist) describes
ALL living organisms as examples of naturally occurring anticipatory
systems, which means that there must be somatic predictive models
(meaning, ‚of the body‛; physical) as components within the organization
of all living organisms. No mental process is required for anticipation. In
his book, Anticipatory Systems, Rosen describes how even single cellular
organisms manifest this behaviour pattern. It is logical to hypothesize
therefore: If it is true that life is anticipatory in this sense, then the evolution
of the conscious mind (such as human beings experience) may be a natural
concentration and amplification of the anticipatory nature of life, itself.

Applications of Artificial Intelligence 137

Machine learning methods started to integrate anticipatory capabilities
in an implicit form as in reinforcement learning systems where they learn
to anticipate future rewards and punishments caused by current actions.

Moreover, anticipation enhanced performance of machine learning
techniques to face with complex environments where agents have to guide
their attention to collect important information to act.

From Anticipation to Curiosity

Jürgen Schmidhuber modifies error back propagation algorithm to
change neural network weights in order to decrease the mismatch between
anticipated states and states actually experienced in the future. He
introduces the concept of curiosity for agents as a measure of the mismatch
between expectations and future experienced reality. Agents able to monitor
and control their own curiosity explore situations where they expect to
engage with novel experiences and are generally able to deal with complex
environments more than the others.

138 Artificial Intelligence : Making a System Intelligent

Artificial Intelligence and
Machine Learning in

Autonomous Systems

CURRENT MACHINE LEARNING APPLICATIONS IN

ROBOTICS

Computer Vision

Though related, some would argue the correct term is machine vision
or robot vision rather than computer vision, because ‚robots seeing‛
involves more than just computer algorithms; engineers and roboticists
also have to account for camera hardware that allow robots to process
physical data. Robot vision is very closely linked to machine vision, which
can be given credit for the emergence of robot guidance and automatic
inspection systems.

The slight difference between the two may be in kinematics as applied
to robot vision, which encompasses reference frame calibration and a
robot’s ability to physically affect its environment.

An influx of big data i.e. visual information available on the web
(including annotated/labeled photos and videos) has propelled advances
in computer vision, which in turn has helped further machine-learning
based structured prediction learning techniques at universities like Carnegie
Mellon and elsewhere, leading to robot vision applications like identification
and sorting of objects.

One offshoot example of this is anomaly detection with unsupervised

learning, such as building systems capable of finding and assessing faults

Artificial Intelligence and Machine Learning in Autonomous Systems 139

in silicon wafers using convolutional neural networks, as engineered by
researchers at the Biomimetic Robotics and Machine Learning Lab, which
is part of the nonprofit Assistenzrobotik e.V. in Munich.

Extrasensory technologies like radar, lidar, and ultrasound, like those
from Nvidia, are also driving the development of 360-degree vision-based
systems for autonomous vehicles and drones.

Imitation Learning

Imitation learning is closely related to observational learning, a behavior
exhibited by infants and toddlers. Imitation learning is also an umbrella
category for reinforcement learning, or the challenge of getting an agent
to act in the world so as to maximize its rewards. Bayesian or probabilistic

models are a common feature of this machine learning approach. The
question of whether imitation learning could be used for humanoid-like
robots was postulated as far back as 1999.

Imitation learning has become an integral part of field robotics, in
which characteristics of mobility outside a factory setting in domains like
domains like construction, agriculture, search and rescue, military, and
others, make it challenging to manually program robotic solutions.
Examples include inverse optimal control methods, or ‚programming by
demonstration,‛which has been applied by CMU and other organizations
in the areas of humanoid robotics, legged locomotion, and off-road rough-
terrain mobile navigators. Researchers from Arizona State published this
video two years ago showing a humanoid robot using imitation learning
to acquire different grasping techniques:

Bayesian belief networks have also been applied toward forward
learning models, in which a robot learns without a priori knowledge of it
motor system or the external environment. An example of this is ‚motor
babbling‛, as demonstrated by the Language Acquisition and Robotics
Group at University of Illinois at Urbana-Champaign (UIUC) with Bert,
the ‚iCub‛ humanoid robot.

Self-Supervised Learning

Self-supervised learning approaches enable robots to generate their
own training examples in order to improve performance; this includes
using a priori training and data captured close range to interpret ‚long-
range ambiguous sensor data.‛ It’s been incorporated into robots and
optical devices that can detect and reject objects (dust and snow, for

140 Artificial Intelligence : Making a System Intelligent

example); identify vegetables and obstacles in rough terrain; and in 3D-

scene analysis and modeling vehicle dynamics

Watch-Bot is a concrete example, created by researchers from Cornell
and Stanford, that uses a 3D sensor (a Kinect), a camera, laptop and laser
pointer to detect ‘normal human activity’, which are patterns that it learns
through probabilistic methods.

Watch-Bot uses a laser pointer to target the object as a reminder (for
example, the milk that was left out of the fridge). In initial tests, the bot
was able to successfully remind humans 60 percent of time (it has no
conception of what it’s doing or why), and the researchers expanded trials
by allowing its robot to learn from online videos (called project RoboWatch).

Other examples of self-supervised learning methods applied in robotics
include a road detection algorithm in a front-view monocular camera with
a road probabilistic distribution model (RPDM) and fuzzy support vector
machines (FSVMs), designed at MIT for autonomous vehicles and other
mobile on-road robots.

Autonomous learning, which is a variant of self-supervised learning
involving deep learning and unsupervised methods, has also been applied
to robot and control tasks. A team at Imperial College in London,
collaborating with researchers from University of Cambridge and University
of Washington, has created a new method for speeding up learning that
incorporates model uncertainty (a probabilistic model) into long-term
planning and controller learning, reducing the effect of model errors when
learning a new skill.

Assistive and Medical Technologies

An assistive robot (according to Stanford’s David L. Jaffe) is a device
that can sense, process sensory information, and perform actions that
benefit people with disabilities and seniors (though smart assistive
technologies also exist for the general population, such as driver assistance
tools).

Movement therapy robots provide a diagnostic or therapeutic benefit.
Both of these are technologies that are largely (and unfortunately) still
confined to the lab, as they’re still cost-prohibitive for most hospitals in
the U.S. and abroad.

Early examples of assistive technologies included the DeVAR, or

desktop vocational assistant robot, developed in the early 1990s by Stanford

and the Palo Alto Veterans Affairs Rehabilitation Research and

Artificial Intelligence and Machine Learning in Autonomous Systems 141

Development. More recent examples of machine learning-based robotic
assistive technologies are being developed that include combining assistive
machines with more autonomy, such as the MICO robotic arm (developed
at Northwester University) that observes the world through a Kinect
Sensor. The implications are more complex yet smarter assistive robots
that adapt more readily to user needs but also require partial autonomy
(i.e. a sharing of control between the robot and human). In the medical
world, advances in machine learning methodologies applied to robotics
are fast advancing, even though not readily available in many medical
facilities. A collaboration through the Cal-MR: Center for Automation and
Learning for Medical Robotics, between researchers at multiple universities
and a network of physicians (collaborations with researchers at multiple
universities and physicians led to the creation of the Smart Tissue
Autonomous Robot (STAR), piloted through the Children’s National Health
System in DC.

Using innovations in autonomous learning and 3D sensing, STAR is
able to stitch together ‚pig intestines‛ (used in lieu of human tissue) with
better precision and reliability than the best human surgeons.

Researchers and physicians make the statement that STAR is not a
replacement for surgeons – who for the foreseeable future would remain
nearby to handle emergencies – but offer major benefits in performing
similar types of delicate surgeries.

Multi-Agent Learning

Coordination and negotiation are key components of multi-agent
learning, which involves machine learning-based robots (or agents – this
technique has been widely applied to games) that are able to adapt to a
shifting landscape of other robots/agents and find ‚equilibrium strategies.‛

Examples of multi-agent learning approaches include no-regret
learning tools, which involve weighted algorithms that ‚boost‛ learning
outcomes in multi-agent planning, and learning in market-based,
distributed control systems.

A more concrete example is an algorithm for distributed agents or
robots created by researchers from MIT’s Lab for Information and Decision
Systems in late 2014.

Robots collaborated to build a better and more inclusive learning

model than could be done with one robot (smaller chunks of information

processed and then combined), based on the concept of exploring a building

142 Artificial Intelligence : Making a System Intelligent

and its room layouts and autonomously building a knowledge base. Each
robot built its own catalog, and combined with other robots’ data sets, the
distributed algorithm outperformed the standard algorithm in creating
this knowledge base.

While not a perfect system, this type of machine learning approach
allows robots to compare catalogs or data sets, reinforce mutual observations
and correct omissions or over-generalizations, and will undoubtedly play
a near-future role in several robotic applications, including multiple
autonomous land and airborne vehicles.

Machine Learning in Robotics: Future Outlook – A Long Term

Priority

The above,brief outline of machine-learning based approaches in
robotics, combined with contracts and challenges put out by powerful
military sponsors (e.g. DARPA, ARL); innovations by major robotics
manufacturers (e.g. Silicon Valley Robotics) and start-up manufacturers
(Mayfield Robotics); and increased investments by a barrage of auto-
manufacturers (from Toyota to BMW) on a next generation of autonomous
vehicles (to name a few influential domains), point to the trend of machine
learning as a long-term priority.

ROBOTICS: ETHICS OF ARTIFICIAL INTELLIGENCE

The artificial intelligence (AI) and robotics communities face an
important ethical decision: whether to support or oppose the development
of lethal autonomous weapons systems (LAWS). Technologies have reached
a point at which the deployment of such systems is — practically if not
legally — feasible within years, not decades. The stakes are high: LAWS
have been described as the third revolution in warfare, after gunpowder
and nuclear arms.

Autonomous weapons systems select and engage targets without
human intervention; they become lethal when those targets include humans.
LAWS might include, for example, armed quadcopters that can search for
and eliminate enemy combatants in a city, but do not include cruise
missiles or remotely piloted drones for which humans make all targeting
decisions.

Existing AI and robotics components can provide physical platforms,

perception, motor control, navigation, mapping, tactical decision-making

and long-term planning. They just need to be combined. For example, the

Artificial Intelligence and Machine Learning in Autonomous Systems 143

technology already demonstrated for self-driving cars, together with the
human-like tactical control learned by DeepMind’s DQN system, could
support urban search-and-destroy missions.

Two US Defense Advanced Research Projects Agency (DARPA)
programmes foreshadow planned uses of LAWS: Fast Lightweight
Autonomy (FLA) and Collaborative Operations in Denied Environment
(CODE). The FLA project will program tiny rotorcraft to manoeuvre unaided
at high speed in urban areas and inside buildings. CODE aims to develop
teams of autonomous aerial vehicles carrying out ‚all steps of a strike
mission — find, fix, track, target, engage, assess‛ in situations in which
enemy signal-jamming makes communication with a human commander
impossible. Other countries may be pursuing clandestine programmes
with similar goals.

International humanitarian law — which governs attacks on humans
in times of war — has no specific provisions for such autonomy, but may
still be applicable. The 1949 Geneva Convention on humane conduct in
war requires any attack to satisfy three criteria: military necessity;
discrimination between combatants and non-combatants; and
proportionality between the value of the military objective and the potential
for collateral damage. (Also relevant is the Martens Clause, added in 1977,
which bans weapons that violate the ‚principles of humanity and the
dictates of public conscience.‛) These are subjective judgments that are
difficult or impossible for current AI systems to satisfy.

The United Nations has held a series of meetings on LAWS under the
auspices of the Convention on Certain Conventional Weapons (CCW) in
Geneva, Switzerland. Within a few years, the process could result in an
international treaty limiting or banning autonomous weapons, as happened
with blinding laser weapons in 1995; or it could leave in place the status
quo, leading inevitably to an arms race.

As an AI specialist, I was asked to provide expert testimony for the
third major meeting under the CCW, held in April, and heard the statements
made by nations and non-governmental organizations. Several countries
pressed for an immediate ban. Germany said that it ‚will not accept that
the decision over life and death is taken solely by an autonomous system‛;
Japan stated that it ‚has no plan to develop robots with humans out of
the loop, which may be capable of committing murder‛.

The United States, the United Kingdom and Israel — the three countries

leading the development of LAWS technology — suggested that a treaty

144 Artificial Intelligence : Making a System Intelligent

is unnecessary because they already have internal weapons review processes
that ensure compliance with international law. Almost all states who are
party to the CCW agree with the need for ‘meaningful human control’ over
the targeting and engagement decisions made by robotic weapons.
Unfortunately, the meaning of ‘meaningful’ is still to be determined.

The debate has many facets. Some argue that the superior effectiveness
and selectivity of autonomous weapons can minimize civilian casualties
by targeting only combatants. Others insist that LAWS will lower the
threshold for going to war by making it possible to attack an enemy while
incurring no immediate risk; or that they will enable terrorists and non-
state-aligned combatants to inflict catastrophic damage on civilian
populations.

LAWS could violate fundamental principles of human dignity by
allowing machines to choose whom to kill — for example, they might be
tasked to eliminate anyone exhibiting ‘threatening behaviour’. The potential
for LAWS technologies to bleed over into peacetime policing functions is
evident to human-rights organizations and drone manufacturers.

In my view, the overriding concern should be the probable endpoint
of this technological trajectory. The capabilities of autonomous weapons
will be limited more by the laws of physics — for example, by constraints
on range, speed and payload — than by any deficiencies in the AI systems
that control them.

For instance, as flying robots become smaller, their manoeuvrability

increases and their ability to be targeted decreases.

They have a shorter range, yet they must be large enough to carry a
lethal payload — perhaps a one-gram shaped charge to puncture the
human cranium. Despite the limits imposed by physics, one can expect
platforms deployed in the millions, the agility and lethality of which will
leave humans utterly defenceless. This is not a desirable future.

The AI and robotics science communities, represented by their
professional societies, are obliged to take a position, just as physicists have
done on the use of nuclear weapons, chemists on the use of chemical
agents and biologists on the use of disease agents in warfare. Debates
should be organized at scientific meetings; arguments studied by ethics
committees; position papers written for society publications; and votes
taken by society members. Doing nothing is a vote in favour of continued
development and deployment.

Artificial Intelligence and Machine Learning in Autonomous Systems 145

Sabine Hauert: Shape the Debate

Irked by hyped headlines that foster fear or overinflate expectations
of robotics and artificial intelligence (AI), some researchers have stopped
communicating with the media or the public altogether. But we must not
disengage. The public includes taxpayers, policy-makers, investors and
those who could benefit from the technology. They hear a mostly one-
sided discussion that leaves them worried that robots will take their jobs,
fearful that AI poses an existential threat, and wondering whether laws
should be passed to keep hypothetical technology ‘under control’. My
colleagues and I spend dinner parties explaining that we are not evil but
instead have been working for years to develop systems that could help
the elderly, improve health care, make jobs safer and more efficient, and
allow us to explore space or beneath the oceans.

Experts need to become the messengers. Through social media,
researchers have a public platform that they should use to drive a balanced
discussion. We can talk about the latest developments and limitations,
provide the big picture and demystify the technology. I have used social
media to crowd-source designs for swarming nanobots to treat cancer.
And I found my first PhD student through his nanomedicine blog.

The AI and robotics community needs thought leaders who can engage
with prominent commentators such as physicist Stephen Hawking and
entrepreneur–inventor Elon Musk and set the agenda at international
meetings such as the World Economic Forum in Davos, Switzerland. Public
engagement also drives funding. Crowdfunding for JIBO, a personal robot
for the home developed by Cynthia Breazeal, at the Massachusetts Institute
of Technology (MIT) in Cambridge, raised more than US$2.2 million.

There are hurdles. First, many researchers have never tweeted, blogged
or made a YouTube video. Second, outreach is ‘yet another thing to do’,
and time is limited. Third, it can take years to build a social-media following
that makes the effort worthwhile. And fourth, engagement work is rarely
valued in research assessments, or regarded seriously by tenure committees.

Training, support and incentives are needed. All three are provided
by Robohub.org, of which I am co-founder and president. Launched in
2012, Robohub is dedicated to connecting the robotics community to the
public. We provide crash courses in science communication at major AI
and robotics conferences on how to use social media efficiently and
effectively. We invite professional science communicators and journalists
to help researchers to prepare an article about their work. The

146 Artificial Intelligence : Making a System Intelligent

communicators explain how to shape messages to make them clear and
concise and avoid pitfalls, but we make sure the researcher drives the story
and controls the end result. We also bring video cameras and ask researchers
who are presenting at conferences to pitch their work to the public in five
minutes. The results are uploaded to YouTube. We have built a portal for
disseminating blogs and tweets, amplifying their reach to tens of thousands
of followers.

I can list all the benefits of science communication, but the incentive
must come from funding agencies and institutes. Citations cannot be the
only measure of success for grants and academic progression; we must
also value shares, views, comments or likes. MIT robotics researcher Rodney
Brooks’s classic 1986 paper on the ‘subsumption architecture’, a bio-inspired
way to program robots to react to their environment, gathered nearly
10,000 citations in 30 years. A video of Sawyer, a robot developed by
Brooks’s company Rethink Robotics, received more than 60,000 views in
one month. Which has had more impact on today’s public discourse?

Governments, research institutes, business-development agencies, and
research and industry associations do welcome and fund outreach and
science-communication efforts. But each project develops its own strategy,
resulting in pockets of communication that have little reach.

In my view, AI and robotics stakeholders worldwide should pool a
small portion of their budgets (say 0.1%) to bring together these disjointed
communications and enable the field to speak more loudly. Special-interest
groups, such as the Small Unmanned Aerial Vehicles Coalition that is
promoting a US market for commercial drones, are pushing the interests
of major corporations to regulators. There are few concerted efforts to
promote robotics and AI research in the public sphere. This balance is
badly needed.

A common communications strategy will empower a new generation
of roboticists that is deeply connected to the public and able to hold its
own in discussions. This is essential if we are to counter media hype and
prevent misconceptions from driving perception, policy and funding
decisions.

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

The ever-expanding field of Artificial Intelligence stands upon the

precipice of a mainstream breakthrough. Whether AI-enhanced

smartphones whip up the public frenzy or driverless cars get there first,

Artificial Intelligence and Machine Learning in Autonomous Systems 147

it’s clear that we’re officially in the AI era. Naysayers will point out AI isn’t
new; researchers were diving into the idea of autonomous computing back
in the 1950s. Today’s developers aren’t so different either, as what they’re
doing is essentially what experts in the field have been working on for
decades.

What’s changed is the raw computing power we have available now.
Fifty years ago, scientists would have needed computers the size of Nevada
to do what we today can do on chips the size of pennies. Perhaps clever
architecture could have gotten it down to the size of a shopping mall, but
you get the point.

As far as hardware is concerned we’ve arrived, and so have the robots.

But what does it all mean? Defining the nature of what AI is, and what
it’s going to do for Joe Public, is difficult. Advances that will affect the
entire world are often complex and take awhile before everyone understands
what’s happening. Remember trying to explain the internet to people in
the 90s? There was a time, not all that long ago, when words like
‚bandwidth‛ and ‚router‛ weren’t common in the lexicon of your average
person. In the next few years everyone is going to want to understand
some basic terms about AI, because you’ll be seeing it all over the place
as every gadget made in the near-future is going to have some form of
artificial intelligence baked in.

Artificial intelligence

The first thing we need to do is understand what an AI actually is.
The term ‚artificial intelligence‛ refers to a specific field of computer
engineering that focuses on creating systems capable of gathering data and
making decisions and/or solving problems.

An example of basic AI is a computer that can take 1000 photos of
cats for input, determine what makes them similar, and then find photos
of cats on the internet. The computer has learned, as best as it can, what
a photo of a cat looks like and uses this new intelligence to find things
that are similar.

Autonomous

Simply put, autonomy means that an AI construct doesn’t need help
from people. Driverless cars illustrate the term ‚autonomous‛ in varying
degrees. Level four autonomy represents a vehicle that doesn’t need a
steering wheel or pedals: it doesn’t need a human inside of it to operate

148 Artificial Intelligence : Making a System Intelligent

at full capacity. If we ever have a vehicle that can operate without a driver,
and also doesn’t need to connect to any grid, server, GPS, or other external
source in order to function it’ll have reached level five autonomy.

Anything beyond that would be called sentient, and despite the leaps
that have been made recently in the field of AI, the singularity (an event
representing an AI that becomes self-aware) is purely theoretical at this
point.

Algorithm

The most important part of AI is the algorithm. These are math formulas
and/or programming commands that inform a regular non-intelligent
computer on how to solve problems with artificial intelligence. Algorithms
are rules that teach computers how to figure things out on their own. It
may be a nerdy construct of numbers and commands, but what algorithms
lack in sex appeal they more than make up for in usefulness.

MACHINE LEARNING AND APPLICATIONS

It’s likely that you’ve interacted with some form of AI in your day-
to-day activities. If you use Gmail, for example, you may enjoy the automatic
e-mail filtering feature. If you own a smartphone, you probably fill out
a calendar with the help of Siri, Cortana, or Bixby. If you own a newer
vehicle, perhaps you’ve benefited from a driver-assist feature while driving.
As helpful as these software products are, they lack the ability to learn
independently. They cannot think outside their code. Machine learning is
a branch of AI that aims to give machines the ability to learn a task without
pre-existing code.

In the simplest terms, machines are given a large amount of trial
examples for a certain task. As they go through these trials, machines learn
and adapt their strategy to achieve those goals.

For example, an image-recognition machine may be given millions of
pictures to analyze. After going through endless permutations, the machine
acquires the ability to recognize patterns, shapes, faces, and more.

A well-known example of this AI concept is Quick, Draw!, a Google-
hosted game that lets humans draw simple pictures in under 20 seconds,
with the machine-learning algorithm trying to guess the drawing. More
than 15 million people have contributed more than 50 million drawings
to the app.

Artificial Intelligence and Machine Learning in Autonomous Systems 149

Deep learning gets ready to play

How do we get machines to learn more than just a specific task? What
if we want it to be able to take what it has learned from analyzing
photographs and use that knowledge to analyze different data sets? This
requires computer scientists to formulate general-purpose learning
algorithms that help machines learn more than just one task.

One famous example of deep learning in action is Google’s AlphaGo
project written in Lua, C++, and Python code. The AlphaGo AI was able
to beat professional Go players, a feat that was thought impossible given
the game’s incredible complexity and reliance on focused practice and
human intuition to master.

How was a program able to master a game that calls for human

intuition? Practice, practice, practice — and a little help from an artificial

neural network.

Neural networks follow natural model

Deep learning is often made possible by artificial neural networks,
which imitate neurons, or brain cells. Artificial neural networks were
inspired by things we find in our own biology. The neural net models use
math and computer science principles to mimic the processes of the human
brain, allowing for more general learning.

An artificial neural network tries to simulate the processes of densely

interconnected brain cells, but instead of being built from biology, these

neurons, or nodes, are built from code.

Neural networks contain three layers: an input layer, a hidden layer
and an output layer. These layers contain thousands, sometimes millions,
of nodes. Information is fed into the input layer. Inputs are given a certain
weight, and interconnected nodes multiply the weight of the connection
as they travel.

Essentially, if the unit of information reaches a certain threshold, then
it is able to pass to the next layer. In order to learn from experience,
machines compare outputs from a neural network, then modify connections,
weights, and thresholds based on the differences among them.

MACHINE LEARNING IN ROBOTICS IN MODERN

APPLICATIONS

As the term ‚machine learning‛ has heated up, interest in ‚robotics‛
(as expressed in Google Trends) has not altered much over the last three

150 Artificial Intelligence : Making a System Intelligent

years. So how much of a place is there for machine learning in robotics?

While only a portion of recent developments in robotics can be credited
to developments and uses of machine learning, I’ve aimed to collect some
of the more prominent applications together in this article, along with
links and references.

Before I delve into machine learning in robotics, go ahead and define
‚robot‛. Though at first this might seem simple, it’s no easy task to come
to an agreement on just what a robot is and what it is not, even amongst
roboticists. For the sake of this article, I’ll borrow an abbreviated definition
of ‚robot‛ from this chapter on the Carnegie Mellon CS Department
website:

‚Force through intelligence.‛
or

‚Where AI meets the real world.‛

Some researchers might even argue against a set definition for robot,
or debate whether a definition can be relative or dependent upon the
context of a situation, such as the concept of ‚privacy‛; this might be a
better approach as more and more rules and regulations are created around
their use in varying contexts. There’s also some debate as to whether the
term robot includes innovations such as autonomous vehicles, drones, and
other similar machines. For the purposes of this chapter, and considering
the definition above, I argue that these types of machines are a class of
mobile robot. Most robots are not, and will likely not, be humanoids 10
years from now; as robots are designed for a range of behaviors in a
plethora of environments, their bodies and physical abilities will reflect
a best fit for those characteristics.

An exception will likely be robots that provide medical or other care
or companionship for humans, and perhaps service robots that are meant
to establish a more personal and ‘humanized’ relationship.

Like many innovative technological fields today, robotics has and is
being influenced and in some directions steered by machine learning
technologies. According to a recent survey published by the Evans Data
Corporation Global Development, machine learning and robotics is at the
top of developers’ priorities for 2016, with 56.4 percent of participants
stating that they’re building robotics apps and 24.7 percent of all developers
indicating the use of machine learning in their projects.

The following overview of machine learning applications in robotics
highlights five key areas where machine learning has had a significant

Artificial Intelligence and Machine Learning in Autonomous Systems 151

impact on robotic technologies, both at present and in the development
stages for future uses. Though by no means inclusive, the purpose of the
summary is to give readers a taste for the types of machine learning
applications that exist in robotics and stimulate the desire for further
research in these and other areas.

ARTIFICIAL INTELLIGENCE (AI) IN ROBOTICS: MACHINE

LEARNING

My area focuses on the specific applications of robotics to extreme and
challenging environments. These include robots that handle nuclear waste,
climb tall towers in the middle of the ocean or survive thousands of meters
underwater so not vacuuming the floor or serving you a coffee.

AI is cross cutting

AI forms a part of this programme, not because of the current hype
around the technology, but simply that some of the latest developments
in machine learning are so well suited to robotic challenges in unstructured
environments.

THE INTELLIGENCE COMMUNITY’S NEGLECT OF

STRATEGIC INTELLIGENCE

Commonly misunderstood, we neglect it at our peril. The architects of the
National Security Act of 1947 would be greatly surprised by today’s neglect
of strategic intelligence in the Intelligence Community.

This year marks the 60th anniversary of the National Security Act of
1947. So many of our most prominent government institutions were created
by this act—the National Security Council (NSC), the Armed Forces as a
joint establishment, the US Air Force, and, of course, the Central Intelligence
Agency (CIA). As a ‚living‛ document, the act has outlasted the Cold War,
for which it was devised, and much more.

By the 1980s the act’s architects had passed away. Their thoroughness
was such, however, that amendments have not radically altered what they
essentially put in place. One relatively recent change, the Goldwater-
Nichols Act of 1986, in addition to its impact on the interrelationships of
the service arms, notably also mandated the creation of an annual National
Security Strategy, a document produced by the president and reported
annually to the Congress.

152 Artificial Intelligence : Making a System Intelligent

The original architects, with World War II in recent memory, knew
very well the importance of giving commanders enough authority, and
they likewise knew the importance of strategy. By 1947 George Kennan
had wired his now famous Long Telegram. In March 1947, President Harry
Truman announced what we now call the Truman Doctrine, and so initiated
America’s national (grand) strategy of Communist Containment. Today,
decades later, a national strategy is not only advisable for the republic but
legally required. One can almost hear the original architects asking
themselves, Why didn’t we think of that? But as much as the security act’s
architects would have approved of a published national strategy, they
would, I believe, be greatly surprised, perhaps even incensed, by today’s
neglect of strategic intelligence in the Intelligence Community. Strategic
intelligence collection and analysis is a capability they took pains to preserve;
we are perilously close to losing it. The reasons are complicated, but they
deserve our examination and discussion in this anniversary year.

Does Anyone Know What Strategic Intelligence Is?

Readers can easily get a sense of the problem by conducting a small,
admittedly unscientific, survey. Hand someone a report on a foreign-
related topic and describe it as ‚strategic intelligence.‛ Then ask the recipient
to explain the term ‚strategic intelligence‛ and how the report qualifies.
In my own surveys, a typical reply, after an awkward pause, has been that
strategic intelligence is information about countries, or about strategic
nuclear forces, or perhaps a long-range forecast. Another common reply,
commendable in its honesty, has been ‚I don’t know.‛

Substantively, none of these answers is adequate—and they are
downright odd when compared to the straightforward answers many of
us would give when asked to define tactical intelligence. These might
include something like ‚intelligence information for the tactical battlefield.‛
Logically enough, the official definition the Pentagon uses is equally
straightforward: ‚Intelligence that is required for planning and conducting
tactical operations.‛

This is the Pentagon’s official definition of strategic intelligence:

Intelligence that is required for the formulation of strategy, policy, and

military plans and operations at national and theater levels.

Or, in fewer words, strategic intelligence is that intelligence necessary
to create and implement a strategy, typically a grand strategy, what
officialdom calls a national strategy. A strategy is not really a plan but the
logic driving a plan.

Artificial Intelligence and Machine Learning in Autonomous Systems 153

A strategy furthers one’s advance towards goals by suggesting ways
to accommodate and/or orchestrate a variety of variables—sometimes too
many for the strategist alone to anticipate and understand. When foreign
areas are involved, in-depth expertise is required, which is what strategic
intelligence provides. Without the insights of deep expertise—insights
based on detailed knowledge of obstacles and opportunities and enemies
and friends in a foreign area—a strategy is not much more than an abstract
theory, potentially even a flight of fancy. The better the strategic intelligence,
the better the strategy, which is why the definition of strategic intelligence
should not be so mysterious. Nevertheless, in official circles and beyond,
too many people attribute meanings to ‚strategic‛ and ‚strategic
intelligence‛ that no dictionary supports. Ignorance of the meaning of
these words has bred ignorance of the strategic product, with, in my view,
enormous consequences.

During the past decade and a half, since the Cold War, the production
and use of strategic intelligence by the United States government has
plunged to egregiously low levels. This decline is badly out of sync with
the broader needs of the republic, fails to meet the nation’s foreign policy
requirements, ill-serves the country’s many national security officials, and
retards the developing prowess of its intelligence analysts.

This neglect is not only perilous, it is tragic. American ingenuity has
made great contributions to the ancient craft of intelligence, contributions
worthy of national pride. The most famous is the American spy satellite,
a Cold War invention. Less famous but just as ingenious is multi-
departmental strategic intelligence, invented during World War II by the
Office of Strategic Services (OSS).

Yet, within the government that created it and that was once its master
artisan, this analytical invention is now largely neglected. As my informal
surveys suggest, very few employees of the Intelligence Community would
say they are working to advance the implementation of the official National
Security Strategy—or indeed, any strategy. Instead, much of today’s
intelligence is tactical, tangential, or tied to national strategy only by
formal references to high-level strategic planning or guidance documents
in forewords, prefaces, or other such administrative front-matter.

Who’s Thinking About Tomorrow?

From my perspective, it’s not clear anyone is, or will be—at least not
as long as the analyst’s primary product is current intelligence, which in
essence is only the daily news compiled with secret information.

154 Artificial Intelligence : Making a System Intelligent

This type of intelligence must be desirable since so many consumers
do consume it, but, like journalism without investigative reporting, it is
not strategic intelligence and cannot replace it. As a percentage of the
community’s workload, however, it nearly has. In a survey of hundreds
of community analysts performed by a fellow at CIA’s Center for the Study
of Intelligence (CSI) about two years ago, these complaints were heard:

Our products have become so specific, so tactical even, that our thinking has
become tactical. We’re losing our strategic edge because we’re so focused on today’s
issues.

About 15 years ago, I used to have 60 percent of my time available for long-

term products. Now, it’s between 20 and 25 percent.
*V+elocity isn’t a substitute for quality. We’ve gotten rid of the real analytic

products that we use to make, and now we just report on current events.

Many of the community’s elders likewise lament the consequences of

a national intelligence effort now so focused upon the immediate:

The Intelligence Community really focused on current intelligence, on policy
support. It does very little research. It has very little understanding below the level

of the policymaker and, in my view, on many issues. I think that, in some ways,

these two groups are reinforcing each other’s worst habits.

A lot of strategic intelligence is not secret. It’s out there. You’d better have
some people who understand history. Instead, they’ve gotten sucked into the
current intelligence business, which is death. It’s death to knowing what’s going
on.

Is American...strategic intelligence up to the demands of the global environment

and our national policies and strategies? I think there is a prima facie case that

the answer is no.

Summarizing their concern is this excerpt from the CSI-published
conference report from which the preceding comment was drawn:

A major [community] weakness...is its difficulty in providing strategic
intelligence—the comprehensive overviews that put disparate events and the

fragmentary snapshots provided by different intelligence sources into a contextual

framework that makes it meaningful for the intelligence consumer. This criticism

applies to intelligence prepared both for a national policy audience and for more

specialized audiences, such as battlefield commanders.

Some supervisors argue that the community is doing more strategic

intelligence work than is generally reported. Perhaps. But the excerpt

above hints at a deeper, more insidious problem: It describes strategic

Artificial Intelligence and Machine Learning in Autonomous Systems 155

intelligence as the provision of context. Context is nice, sometimes even
helpful, but it does not compellingly excite the average consumer, especially
the military one, because it is not strategic support. Yet ‚context‛ is what
most analysts and consumers assume strategic intelligence is.

Another common assumption is that strategic intelligence is merely
a longer range perspective. Officialdom even promotes this, if unwittingly.
For example, in the National Defense Intelligence College, a component
of the Defense Intelligence Agency, is the Center for Strategic Intelligence
Research (CSIR). The center describes itself as ‚the Intelligence Community’s
research and publication center devoted to an impartial exploration of
medium- and long-range issues of concern to intelligence directors ‛

Where in that description, however, is there any allusion to national
strategy? Or does strategic intelligence exist in a realm without strategy?
Should it? At the risk of waxing nostalgic about the Cold War, in that era
many policymakers were voracious consumers of strategic intelligence
because it did provide strategic support. Used to tailor the grand strategy
of communist containment, it deeply assessed the threats the United States
and its allies faced, articulated their strengths and weaknesses, and noted
exploitable opportunities. It was ‚current‛ in that it was timely, but it was
also strategic. Directly applicable to the national strategy, it was, in today’s
terminology, ‚actionable‛ intelligence.

At present, about one half of the community’s analysts possess less
than five years of experience.8 Strategic intelligence is not their forte; few
would have learned it in college and most have not had enough practice
to gain sufficient understanding and expertise to produce strategic
intelligence. As intelligence agencies swell their ranks with more and more
new analysts, this situation is unlikely to improve anytime soon.

At CIA in particular, General Michael Hayden told Congress last year
that for every 10 CIA analysts with less than four years of experience, only
one analyst has more than 10 years of experience. ‚This is the least
experienced analytic workforce in the history of the Central Intelligence
Agency,‛ he said. One result, warned Carl W. Ford Jr., a former assistant
secretary of state for intelligence and research, is that ‚we haven’t done
strategic intelligence for so long that most of our analysts don’t know how
to do it anymore.‛

Another reason strategic intelligence ‚isn’t done‛ is that among today’s
intelligence consumers, urgency is pushing tactical thinking. To stop terrorists,

I need this specific piece of tactical intelligence—right now. Consequently, by

156 Artificial Intelligence : Making a System Intelligent

default, those analytical topics that feel somehow too grand, or too distant

in time and place to matter immediately, tend to get ignored.

In fairness to intelligence analysts and their managers, they are merely
following standard procedure, performing compartmentalized, narrowly
focused routines. But reality is not entirely amenable to
compartmentalization. Reality is inter-related and messy, involving deadly
diseases from AIDS to avian flu; politically disruptive environmental
changes; demographic dislocation; endemic corruption; trafficking in
everything from people to weapons of mass destruction (WMD); intolerant
belief-systems; genocide; shifting centers of economic power; global energy
competition; and engineering breakthroughs from bio-manipulation to
nano technology. These challenges are so profoundly complex, they cannot
be well explained only in current or tactical intelligence. Even if analysts
are doing the reporting, reporting the facts de jour is not analysis. At the
other extreme, analysis should not exist for its own sake, as though any
interpretation of facts is better than none at all. Producing token
interpretations, day after day, may keep an analyst employed, but as
analytical practice this is only ‚make work‛ activity. More often than not
it just dulls an analyst’s proficiency while the consumer gets a flow of
pseudo-analytic drivel. Effective analysis ought to enhance a product until
it empowers a consumer with the maximum advantage an expert’s insight
can provide. That is actionable intelligence.

At the Creation

Many a reader of Studies in Intelligence knows the contributions of
Sherman Kent, including his book Strategic Intelligence and American World

Policy, published in 1949. But to understand from whence modern strategic
intelligence originated and where we stand today, we need to look back
to World War II, to the work of the Research and Analysis (R&A) branch
of the OSS.

At the time, the R&A products that most impressed the US military
were infrastructure studies. In 1942, as American forces prepared to invade
North Africa, a young Kent at R&A supervised the creation of several
studies of that region’s ports and railways. Showing vast detail, those
studies amazed their military consumers. R&A found most of the raw
information quite openly in books, trade journals, statistical abstracts and
almanacs, even in the archived project files of cooperative private
companies. Kent and his colleagues—all practiced scholars supported by

Artificial Intelligence and Machine Learning in Autonomous Systems 157

the full resources of the Library of Congress—knew where to find good

information.

Today, by contrast, the typical intelligence analyst rarely exploits open
sources as well. Working in environments dominated by secrecy and
security concerns, most analysts work in relative seclusion. As a result,
compared to an experienced professor or a seasoned business researcher—
both proficient at exploiting open sources deeply—most entry-level analysts
are novices.

Accurate, detailed information is not necessarily available via the
Internet, nor is it always free. Far more exists off the Internet, but the daily
deadlines of current intelligence discourage its deep exploitation. So, for
reasons of ease, speed, and perhaps a little arrogance, most community
analysts confine their raw material to secret information. Secret information
may be very good, but information need not be secret to be accurate. And,
as we know from the experience of Iraqi WMD, secret information is not
necessarily always accurate.

Back to R&A. In 1943, it subjected its famed infrastructure studies to
military-economic analysis and, in so doing, invented multi-departmental
strategic intelligence. This excerpt from a CIA-published history of the
OSS summarizes that phenomenal achievement:

Analyses by the Enemy Objectives Unit (EOU), a team of R&A economists

posted to the U.S. Embassy in London, sent Allied bombers toward German fighter
aircraft factories in 1943 and early 1944. After the Luftwaffe’s interceptor force
was weakened, Allied bombers could strike German oil production, which EOU

identified as the choke-point in the Nazi war effort. The idea was not original with

OSS, but R&A’s well-documented support gave it credibility and helped convince

Allied commanders to try it.... The resulting scarcity of aviation fuel all but

grounded Hitler’s Luftwaffe and, by the end of [1944], diesel and gasoline production

had also plummeted, immobilizing thousands of German tanks and trucks.

A great success. Imagine if R&A’s infrastructure studies had not existed
or were produced in haste by amateurs ignorant of the best sources, the
results either inaccurate or incomplete. The actual studies were good, of
course, but they might have remained strictly tactical intelligence tools,
as tactical as a sergeant’s field map, nothing strategic. Imagine if nobody
had bothered to think any harder, too cautious or too busy to consider,
let alone attempt, a thoroughly multi-disciplinary analysis in the hope of
creating a decisive advantage. Good information abounded, but information
on paper is not necessarily knowledge in an analyst’s mind, and therefore

158 Artificial Intelligence : Making a System Intelligent

not necessarily incorporated into that analyst’s impressions and analyses.

Which brings us to the EOU’s economists. Quite young, they could
have been derided as ‚a bunch of silly economists ignorant of real war.‛
They did have advanced university degrees and did represent the OSS,
but what made them insightful, persuasive, and ultimately successful is
what they knew as individuals. They knew what they were talking about,
and it showed. Their thorough study of the multi-disciplinary material
they accumulated made them true subject-matter experts. In the process,
they created a new intelligence discipline whose tradecraft transforms vast
amounts of scattered information into an individual’s comprehensive
knowledge and, ultimately, into exceptional insight. The respect they
received, they earned.

The OSS did not survive the postwar demobilization of late 1945, but
R&A did. Initially transferred to the State Department, it went to CIA
because the strategic intelligence capability it embodied was understood
to be essential to the national security, whether in war or peace.

Preserving that capability was one of the objectives the architects of
the National Security Act of 1947 had in mind. Although the term ‚strategic
intelligence‛ does not appear, for that term was not yet commonly used
among civilians, the act did call for the continuous production of ‚national
intelligence,‛ a category the act treats as distinctly different from tactical
intelligence.

National intelligence, according to the act, was to be produced by the
Intelligence Community under the Director of Central Intelligence (DCI),
now the DNI. Tactical intelligence was to be the job of the military services,
perhaps not without Intelligence Community help, but that help was not
to be the community’s main effort. The original architects of the act knew
the mission of producing national (strategic) intelligence would be daunting,
which is why they created a central agency, CIA, to not only receive and
coordinate the government’s intelligence information but, crucially,
undertake multi-disciplinary analysis (an endeavor more comprehensive
than ‚all-source analysis‛) to achieve the great successes R&A had achieved
in World War II.

Little wonder, then, that so many veterans of the old R&A, like Sherman

Kent, were recruited into the new CIA.

Informative or Ivory Tower?

‚Let things be such,‛ Kent advised during the Cold War, ‚that if our

Artificial Intelligence and Machine Learning in Autonomous Systems 159

policymaking master is to disregard our knowledge and wisdom, he will
never do so because our work was inaccurate, incomplete, or patently
biased.‛

Every good analyst knows the importance of objectivity. By following
evidence-based logic, an objective analysis holds the potential to debunk
a policymaker’s preconceptions, even reveal how his preferred policy
actually fails. What keeps the policymaker receptive to such analysis,
despite the bad news it may contain, is its claim to objectivity.

The analyst’s need to be objective and his need to know which topics
most interest a policymaker (or other consumer) have posed a dilemma
that has been much discussed in these pages and in the literature of
intelligence in general. Kent himself rated the risk that analysts would be
contaminated by consumers a greater danger than the risk posed by self-
imposed isolation.

As a result, the CIA’s analytical components tended to be isolated and
at times seemed out of touch with their consumers. Because so much
intelligence work is secretive anyway, the isolation would have felt normal.
The Cold War itself reinforced the isolation by requiring little daily
interaction between analysts and consumers, the Cuban Missile Crisis
being a rare exception.

More typically, the president and other senior officials received daily
intelligence briefings, delivered by a briefer (not an analyst) or as a
document. Thereafter, those officials would seldom see or speak with an
intelligence officer until the next morning’s briefing.

That arrangement worked throughout the Cold War because most
policymakers knew which countries mattered and knew a lot about them.
Every US president from Kennedy to George H. W. Bush witnessed the
opening of the Cold War as adults and learned the dynamics of the
containment strategy and the key countries in the game. The Cold War
dominated current events, university discussions, and, of course, military
planning. With decades of experience, each president would find the
Intelligence Community effort to be additional to their own efforts and
thus only supplemental, albeit crucially so.

In the military as well, limited interaction prevailed. Behind their
salutes and outward camaraderie, many intelligence and operations
personnel were actually a little suspicious of each other, mutually afraid
of security leaks. Contingency war planning was considered so sensitive
that intelligence people, ostensibly supporting the operators, were told

160 Artificial Intelligence : Making a System Intelligent

remarkably few specifics by those very operators devising the plans. This
left many analysts with time to hone their craft. Consider what they had
to learn: In strategic intelligence especially, though not exclusively, every
issue involves multiple disciplines: politics, economics, organizational
behavior, infrastructure studies (terrain, transportation,
telecommunications), engineering, and military science (ground, naval,
air, space, nuclear, unconventional).

Cultural awareness is imperative, which means knowing more than
just some stereotypes. Every ethnicity, religion, and organization has a
culture, usually several, their diversity and dynamics revealed only through
study. Another analytical skill is to see events in true proportion, using
historical experience to investigate across time and distance. An obscure
event may possess more lasting significance than today’s headline story—
the former brewing as a future crisis, the latter likely to be forgotten within
days. Intertwined with analysis is communicating it.

This can be remarkably difficult because many habits of conversation

tend to be remarkably sloppy. Well, everybody knows what I really mean!

Little better are many habits of writing.

In 1953, decades before instant e-mail rendered a quick spurt of typing
preferable to a carefully crafted essay, Kent expressed his ‚sense of outrage
at the infantile imprecision of the language‛ being used even then. To craft
language which is literal, concise, and not misleading requires editing,
editing, and more editing.

Analysts are thus encouraged, though less so these days, to write
strategic studies on their own initiative: typically a few pages long, including
an executive summary. The luckiest studies somehow avoid a consumer’s
immediate toss into a burn bag of classified trash, instead gaining a
temporary but honored place on his desk, ready for a spare moment’s
reading because the content remains relevant for at least six months, in
some cases for years. Yet, even if the only readers are the analyst’s colleagues,
every study results from practice.

What’s In A Name? Sometimes Some Misunderstanding.

The efforts of Kent and his fellows to promote semantic precision
could not, alas, counteract decades of Cold War routine. Misconceptions
were spread, now all too common, of what ‚strategic‛ means and hence
what strategic intelligence supposedly is.

One misconception is that strategic intelligence must pertain to a long

Artificial Intelligence and Machine Learning in Autonomous Systems 161

period of time. In truth, strategic intelligence pertains to strategy, whereas
the particular strategy of containment lasted a long period of time.
Containment emphasized patience: hold back the Communist bloc states
until their internal troubles compel either their reform or their implosion.
Since a long wait was expected, many strategic intelligence studies produced
then were trend analyses, forecasts, and multiyear estimates. If the
timeframe of a strategic issue is short, however, as several are, the strategic
intelligence should mirror that.

If that seems obvious now, it was not so obvious then. Even less
obvious was a Cold War routine which encouraged the idea that ‚strategic‛
means long range. In 1947, the new US Air Force saw in nuclear weapons
a means to inflict so-called strategic bombing—defeat an enemy by bombing
his national assets, particularly his industrial cities.

The US Army wanted nuclear weapons, too, for so-called battlefield
use—to destroy Soviet Army formations in eastern Germany if they tried
to invade the West. Two nuclear roles, strategic bombing and battlefield
use, thus created two categories of nuclear weapons, strategic and tactical.
Hence the assumption, still prevalent throughout the military today, that
strategic means long range while tactical means short.

That assumption is false. Would a thermonuclear blast on a ‚tactical‛
battlefield have strategic ramifications? Of course. Consequently, today’s
experts in nuclear arms control cannot easily define, in precise legalistic
treaty language, what makes a nuclear warhead exclusively ‚tactical‛ or
‚strategic.‛ Not even the Strategic Arms Reduction Treaty (START), some
800 pages long, attempts to define the word ‚strategic.‛ START defines
delivery systems, such as heavy bombers and inter-continental ballistic
missiles. Its negotiators could have defined ‚strategic‛ as merely some
agreed number of kilometers. Yet they did not, indeed quite sensibly.

Beware of What You Wish For...

By the time Bill Clinton assumed the presidency in 1993, the Cold War
was over and the world had changed. Subsequent globalization has not
homogenized it. What globalization has done is link more localities than
ever before—via television, e-mail, phone calls, postal packages, and
airplane flights. Usually the results are beneficial, a worthy trade in goods,
services, and ideas. But whenever the ‚locals‛ somewhere grow restless,
the response time left to ‚outsiders‛ (actually distant participants) is now
acutely short. Since a Soviet affairs expert is no longer ‚qualified‛ to speak

162 Artificial Intelligence : Making a System Intelligent

intelligently about Africa, the Far East, Latin America, or even about
today’s Russia, specialized expertise in that foreign area is now
indispensable. Since terrorist networks can thrive in even the most anarchic
and impoverished places, every country, indeed every province, now merits
at least some intelligence attention.

In other words, today should be a golden age for strategic intelligence.
Instead, what began in the 1990s as a needed intelligence reform—an
attempt to reduce the analyst’s isolation from the policymaker—has
overcompensated, the bureaucratic pendulum pushed from one extreme
to another.

Some critics accuse the reform itself of having ‚politicized‛ intelligence,
for it encourages more analyst-consumer interaction than was preferred
during the Cold War. More interaction does raise some risks, of course,
but there were risks, too, when the analysts were isolated. Kent himself
realized this late in his career. Though he remained concerned about the
potential for ‚group think,‛ he taught that analysts and consumers must
communicate well enough that when an analyst warns of a coming
international crisis, the consumer breaks away from his busy schedule and
does respond, quickly—for he trusts in that analyst’s competence.
Otherwise, without that trust and easy access, without that professional
bond, warnings are ignored too often. ‚Warning is like love,‛ Kent quipped.
‚It takes two to make it.‛

The reform was initiated by Robert Gates when he was the DCI (1991-

93). Drawing upon his experience as an analyst and an NSC consumer,

he observed and proclaimed:

Unless intelligence officers are down in the trenches with the policymakers—
understand the issues and know what US objectives are, how the process works,

and who the people are—they cannot possibly provide either relevant or timely

intelligence that will contribute to better-informed decisions. Others agreed,
including an important advisory body in 1996, the Clinton administration’s
Commission on the Roles and Capabilities of the U.S. Intelligence
Community. Among its recommendations was this advice:

Intelligence must be closer to those it serves The Commission believes [that

the objectivity] problem is real but manageable. The need to present the ‚unvarnished
truth‛ to policymakers is at the core of every analyst’s training and ethos [At

the same time, as one expert testified,+ ‚if an intelligence analyst is not in some
danger of being politicized, he is probably not doing his job.‛ The Commission
agrees.

Artificial Intelligence and Machine Learning in Autonomous Systems 163

Hence the phenomenal change, one which the ‚Long War‛ on terrorism
has since intensified. Whatever consumers ask, analysts now endeavor to
answer with unprecedented single-mindedness. Likewise in the military,
operations in the Balkans, Afghanistan, and Iraq have encouraged a much
closer interaction between intelligence and operations personnel. Close
intelligence support has enabled successes as spectacular as the capture
of Saddam Hussein. And it tracks down terrorists.

...You May Get Your Wish—But Nothing Else.

Unfortunately, when the consumers’ obvious preference is for current
and tactical intelligence, strategic intelligence faces neglect. Those analysts
who grew up in the period when attention to strategic intelligence permitted
them to deepen their skills and become genuine subject-matter experts
have been dwindling away. Many have retired from government service
for private sector jobs or left the field entirely.

Meanwhile, a decade’s worth of younger (albeit very bright) analysts
are being promoted with much less experience in that past crucible of
analytical development. It is lacking because the skills necessary for strategic
intelligence do not thrive in the equivalent of a crisis center, rushing from
task to task, fact-sheet to fact-sheet, and blurb to blurb. ‚It’s like cramming
for finals, except we do it every day.‛ If current trends continue, the high
analytical standards of the past will go from standard procedure to ‚old
school‛ to possibly a dead art.

Both the 9/11 Commission and the WMD Commission have noted this

strategic intelligence deficiency, the latter’s report adding:
Managers and analysts throughout the Intelligence Community have

repeatedly expressed frustration with their inability to carve out time for long-

term research and thinking. This problem is reinforced by the current system of

incentives for analysts, in which analysts are often rewarded for the number of

pieces they produce, rather than the substantive depth or quality of their production.

Under the tutelage of the National Intelligence Council (NIC) there
is now a unit of analysts, on rotation, officially devoted to strategic
intelligence work. As beneficial as their work can be, however, the NIC
itself has only 18 members. How many of the community’s thousands of
analysts can they mentor personally? Not the mediocre, presumably. A
former chairman of the NIC, Robert Hutchings, has even expressed concern
that the NIC staff, the chosen few, has gotten too involved in doing current
intelligence work in order to help produce the DNI’s daily morning briefings
for the president.

164 Artificial Intelligence : Making a System Intelligent

Simply ordering the community’s analysts to produce more strategic
intelligence may seem the obvious solution, but decrees alone cannot
change an analyst’s opinion of which product types would best advance
his career. As long as any ‚strategic intelligence‛ products provide only
‚context‛ and not actionable strategic support, how can the tradecraft not
actually languish? Whenever a crisis grabs the headlines, a bellicose Iran
or North Korea for example, analyses are published of the ‚strategic
ramifications.‛ But if those reports fall within the domain of strategic
intelligence, they hardly fill it.

Garnering less attention are the less interesting issues and countries,
presumably resulting in less expertise. There is some renewed interest in
doing longer forecasts, but those particular analysts are generally separated
from the rest, their experience confined mostly to themselves. Rotational
assignments might help, but many years will pass before that specialized
experience pervades the larger community. Furthermore, strategic
intelligence work is something a young analyst should begin with, develop
with, not ‚graduate‛ into after years of ignorance of it.

Let’s have a look at examples of these latest techniques and the problems
they are solving.

Perception: where am I and what am I looking at?

One of the fields of computer vision that has in recent years been
disrupted by AI is image classification. The main advance in recent years
is deep learning and particularly convolutional neural networks that are
trained to recognise objects in images.

Learning techniques and algorithms for robots

Like many current machine learning techniques, the algorithms were

Artificial Intelligence and Machine Learning in Autonomous Systems 165

actually first proposed and used on a smaller scale decades ago. The

reason for the recent surge in their performance and use is threefold:

• There are much larger data-sets now that engineers use to train

algorithms

• Cheap access to the powerful computer hardware particularly

suitable to the task

• Open access to coding techniques and tools; engineers now don’t
need to re-invent the wheel every time they approach a new problem

Fig. A remotely operated underwater vehicle (ROV)

So what? In robotics, this is an important capability which can reduce

direct or remote human involvement in hazardous environments.

A robot capable of identifying objects in images, from an onboard
camera, in real time, can perceive more about its surroundings.

These algorithms may be trained to recognise specific defects in
structures being inspected, potentially using the same transfer learning
technique as in some of the recent examples of neural networks for diagnosis
from medical images.

Planning and Control: how can I complete my task?

Reinforcement learning is one of the most exciting developments in

machine learning in recent years.

The most commonly seen examples are those of AI playing various

retro computer games.

These examples may appear to be just for fun however, what they

demonstrate is that very general tasks can be solved using only using what

the machine can see.

166 Artificial Intelligence : Making a System Intelligent

The game’s score acts as the machine’s reward.

It means that the algorithms being developed are highly
general so they can be retrained for many different tasks and
environments.

In much the same way as a baby will experiment with the world and
learn over time what works and what does not, eventually complex
behaviours can be learnt in order to achieve a simple goal.

Real life imitating games

So what? If reinforcement learning can be applied to games, it can be

applied to simulations of many real-life environments.

If a simulation of a robot and its environment is close enough to real
life, then this technique can explore and optimise different solutions to
tasks.

In some cases, simulations can be sped up so years of learning can
be compressed into just hours.

Artificial Intelligence and Machine Learning in Autonomous Systems 167

Training a robot workforce

For many robots that work in extreme environments, explicitly

programmed instructions are either not feasible, or so time-consuming for

a human that the robot becomes an unproductive burden.

Reinforcement learning means that robots can be given simple goals
to achieve, and they will use their learnt techniques and their internal
knowledge of the world to plan how to achieve a task.

At Innovate UK we are funding projects that use machine learning
algorithms across all sectors, and into all of the Industrial Strategy Grand
Challenges, from medicine to the digital economy to space, transportation
and agriculture.

AI points of view

Artificial Intelligence (AI). Two words, which together conjure up an
extraordinarily wide range of meanings, and with them, opinions and
emotions. Ask one person, and their view is that AI is an existential threat
to humanity; potentially taking all our jobs or even turning against us like

168 Artificial Intelligence : Making a System Intelligent

the sci-fi like visions of killer robots. Ask another, and you might be met
with an eye roll, that the entire subject can be dismissed as simply
algorithms, and anything more is just hype.

Both extreme viewpoints have their truths and their fallacies. In reality,
the machine learning techniques that make the modern AI magic tricks
happen are progressing at an exciting rate, transforming some industries,
but simultaneously the various AI apocalypse scenarios are a comforting
distance away.

AI AND OUR FUTURE WORKFORCE

The World Economic Forum estimates that, by 2022, a large proportion
of companies will have adopted technologies such as machine learning,
and therefore strongly encourages governments and education to focus on
rapidly raising education and skills, with a focus on both STEM (science,
technology, engineering and mathematics) and non-cognitive soft skills,
in order to meet this impending need.

Microsoft’s recent study shows that, by 2030, students will need to
have mastered two facets of this new world by the time they graduate:

• Know how to utilise ever-changing technology, such as AI, to their

advantage

• Understand how to work with other people in a team to problem
solve effectively

Preparing students to work alongside AI in the future can start early.
As most children are comfortable with digital technology by the time they
are of school age, teaching them the skills they’ll need to thrive in a digital
workplace is important. Add the inclusion of AI in education, and the
workforce of the future will be better prepared to face the unknown
challenges of the workplace of tomorrow.

MACHINE LEARNING

The meat and potatoes of AI is machine learning — in fact it’s typically
acceptable to substitute the terms artificial intelligence and machine learning
for one another. They aren’t quite the same, however, but connected.

Machine learning is the process by which an AI uses algorithms to
perform artificial intelligence functions. It’s the result of applying rules to
create outcomes through an AI.

Artificial Intelligence and Machine Learning in Autonomous Systems 169

Black box

When the rules are applied an AI does a lot of complex math. This
math, often, can’t even be understood by humans (and sometimes it just
wouldn’t be worth the time it would take for us to figure it all out) yet
the system outputs useful information. When this happens it’s called black
box learning. The real work happens in such a way that we don’t really
care how the computer arrived at the decisions it’s made, because we know
what rules it used to get there. Black box learning is how we can ethically
skip ‚showing our work‛ like we had to in high school algebra.

Neural network

When we want an AI to get better at something we create a neural
network. These networks are designed to be very similar to the human
nervous system and brain. It uses stages of learning to give AI the ability
to solve complex problems by breaking them down into levels of data. The
first level of the network may only worry about a few pixels in an image
file and check for similarities in other files. Once the initial stage is done,
the neural network will pass its findings to the next level which will try
to understand a few more pixels, and perhaps some metadata. This process
continues at every level of a neural network.

Deep learning

Deep learning is what happens when a neural network gets to work.
As the layers process data the AI gains a basic understanding. You might
be teaching your AI to understand cats, but once it learns what paws are
that AI can apply that knowledge to a different task. Deep learning means
that instead of understanding what something is, the AI begins to learn
‚why.‛

Natural language processing

It takes an advanced neural network to parse human language. When
an AI is trained to interpret human communication it’s called natural
language processing. This is useful for chat bots and translation services,
but it’s also represented at the cutting edge by AI assistants like Alexa and
Siri.

Reinforcement learning

AI is a lot more like humans than we might be comfortable believing.
We learn in almost the exact same way. One method of teaching a machine,

170 Artificial Intelligence : Making a System Intelligent

just like a person, is to use reinforcement learning. This involves giving
the AI a goal that isn’t defined with a specific metric, such as telling it to
‚improve efficiency‛ or ‚find solutions.‛ Instead of finding one specific
answer the AI will run scenarios and report results, which are then evaluated
by humans and judged. The AI takes the feedback and adjusts the next
scenario to achieve better results.

Supervised learning

This is the very serious business of proving things. When you train
an AI model using a supervised learning method you provide the machine
with the correct answer ahead of time. Basically the AI knows the answer
and it knows the question. This is the most common method of training
because it yields the most data: it defines patterns between the question
and answer. If you want to know why something happens, or how
something happens, an AI can look at the data and determine connections
using the supervised learning method.

Unsupervised learning

In many ways the spookiest part of AI research is realizing that the
machines are really capable of learning, and they’re using layers upon
layers of data and processing capability to do so. With unsupervised
learning we don’t give the AI an answer. Rather than finding patterns that
are predefined like, ‚why people choose one brand over another,‛ we
simply feed a machine a bunch of data so that it can find whatever patterns
it is able to.

Transfer learning

Another spooky way machines can learn is through transfer learning.
Once an AI has successfully learned something, like how to determine if
an image is a cat or not, it can continue to build on it’s knowledge even
if you aren’t asking it to learn anything about cats. You could take an AI
that can determine if an image is a cat with 90-percent accuracy,
hypothetically, and after it spent a week training on identifying shoes it
could then return to its work on cats with a noticeable improvement in
accuracy.

Turing Test

If you’re like most AI experts you’re cautiously optimistic about the
future and you have reservations about our safety as we draw closer to

Artificial Intelligence and Machine Learning in Autonomous Systems 171

robots that are indistinguishable from people. Alan Turing shared your
concerns. Though he died in 1954 his legacy lives on in two ways. Primarily
he’s credited with cracking Nazi codes and helping the Allies win World
War 2. He’s also the father of modern computing and the creator of the
Turing Test.

While the test was originally conceived as a way of determining if a
human could be fooled by a conversation, in text display only, between
a human and an artificial intelligence, it has since become short hand for
any AI that can fool a person into believing they’re seeing or interacting
with a real person.

172 Artificial Intelligence : Making a System Intelligent

Artificial Intelligence in Software
Metrics for Algorithmic Trading

SOFTWARE METRICS IN ALGORITHMIC

In computer science, efficiency is used to describe properties of an
algorithm relating to how much of various types of resources it consumes.
Algorithmic efficiency can be thought of as analogous to engineering
productivity for a repeating or continuous process, where the goal is to
reduce resource consumption, including time to completion, to some
acceptable, optimal level.

Software Metrics

The two most frequently encountered and measurable metrics of an

algorithm are:-

• speed or running time - the time it takes for an algorithm to complete,

and

• ‘space’ - the memory or ‘non-volatile storage’ used by the algorithm

during its operation.

but also might apply to

• transmission size - such as required bandwidth during normal

operation or

• size of external memory- such as temporary disk space used to
accomplish its task

and perhaps even

• the size of required ‘longterm’ disk space required after its operation
to record its output or maintain its required function during its

Artificial Intelligence in Software Metrics for Algorithmic Trading 173

required useful lifetime (examples: a data table, archive or a

computer log) and also

• the performance per watt and the total energy, consumed by the
chosen hardware implementation (with its System requirements,
necessary auxiliary support systems including interfaces, cabling,
switching, cooling and security), during its required useful lifetime.
See Total cost of ownership for other potential costs that might be
associated with any particular implementation.

(An extreme example of these metrics might be to consider their
values in relation to a repeated simple algorithm for calculating and storing
(ð+n) to 50 decimal places running for say, 24 hours, either on a ‚pocket
calculator‛ sized processor such as an ipod or an early mainframe operating
in its own purpose-built heated or air conditioned unit.) The process of
making code more efficient is known as optimization and in the case of
automatic optimization (i.e. compiler optimization - performed by compilers
on request or by default), usually focus on space at the cost of speed, or
vice versa.

There are also quite simple programming techniques and ‘avoidance
strategies’ that can actually improve both at the same time, usually
irrespective of hardware, software or language. Even the re-ordering of
nested conditional statements - to put the least frequently occurring
condition first (example: test patients for blood type =’AB-’, before testing
age > 18, since this type of blood occurs in only about 1 in 100 of the
population - thereby eliminating the second test at runtime in 99% of
instances), can reduce actual instruction path length, something an
optimizing compiler would almost certainly not be aware of - but which
a programmer can research relatively easily even without specialist medical
knowledge.

History

The first machines that were capable of computation were severely
limited by purely mechanical considerations. As later electronic machines
were developed they were, in turn, limited by the speed of their electronic
counterparts. As software replaced hard-wired circuits, the efficiency of
algorithms also became important. It has long been recognized that the
precise ‘arrangement of processes’ is critical in reducing elapse time.

• ‚In almost every computation a great variety of arrangements for
the succession of the processes is possible, and various considerations

174 Artificial Intelligence : Making a System Intelligent

must influence the selections amongst them for the purposes of a
calculating engine. One essential object is to choose that arrangement
which shall tend to reduce to a minimum the time necessary for
completing the calculation‛

Ada Lovelace 1815-1852, generally considered as ‘the first programmer’
who worked on Charles Babbage’s early mechanical general-purpose
computer

• ‚In established engineering disciplines a 12% improvement, easily
obtained, is never considered marginal and I believe the same
viewpoint should prevail in software engineering‛

Extract from ‚Structured Programming with go to Statements‛ by
Donald Knuth, renowned computer scientist and Professor Emeritus of
the Art of Computer Programming at Stanford University.

• ‚The key to performance is elegance, not battalions of special cases‛
attributed to Jon Bentley and (Malcolm) Douglas McIlroy

Speed

The absolute speed of an algorithm for a given input can simply be
measured as the duration of execution (or clock time) and the results can
be averaged over several executions to eliminate possible random effects.
Most modern processors operate in a multi-processing & multi-
programming environment so consideration must be made for parallel
processes occurring on the same physical machine, eliminating these as
far as possible.

For superscalar processors, the speed of a given algorithm can
sometimes be improved through instruction-level parallelism within a
single processor (but, for optimal results, the algorithm may require some
adaptation to this environment to gain significant advantage (‘speedup’),
becoming, in effect, an entirely different algorithm). A relative measure
of an algorithms performance can sometimes be gained from the total
instruction path length which can be determined by a run time Instruction
Set Simulator (where available). An estimate of the speed of an algorithm
can be determined in various ways. The most common method uses time
complexity to determine the Big-O of an algorithm. See Run-time analysis
for estimating how fast a particular algorithm may be according to its type
(example: lookup unsorted list, lookup sorted list etc.) and in terms of
scalability - its dependence on ‘size of input’, processor power and other
factors.

Artificial Intelligence in Software Metrics for Algorithmic Trading 175

Memory

Often, it is possible to make an algorithm faster at the expense of
memory. This might be the case whenever the result of an ‘expensive’
calculation is cached rather than recalculating it afresh each time. The
additional memory requirement would, in this case, be considered
additional overhead although, in many situations, the stored result occupies
very little extra space and can often be held in pre-compiled static storage,
reducing not just processing time but also allocation & deallocation of
working memory. This is a very common method of improving speed, so
much so that some programming languages often add special features to
support it, such as C++’s ‘mutable’ keyword. The memory requirement of
an algorithm is actually two separate but related things:-

• The memory taken up by the compiled executable code (the object
code or binary file) itself (on disk or equivalent, depending on the
hardware and language). This can often be reduced by preferring
run-time decision making mechanisms (such as virtual functions
and run-time type information) over certain compile-time decision
making mechanisms (such as macro substitution and templates).
This, however, comes at the cost of speed.

• Amount of temporary ‚dynamic memory‛ allocated during
processing. For example, dynamically pre-caching results, as
mentioned earlier, improves speed at the cost of this attribute. Even
the depth of sub-routine calls can impact heavily on this cost and
increase path length too, especially if there are ‘heavy’ dynamic
memory requirements for the particular functions invoked. The use
of copied function parameters (rather than simply using pointers
to earlier, already defined, and sometimes static values) actually
doubles the memory requirement for this particular memory metric
(as well as carrying its own processing overhead for the copying
itself. This can be particularly relevant for quite ‘lengthy’ parameters
such as html script, JavaScript source programmes or extensive
freeform text such as letters or emails.

Rematerialization

It has been argued that Rematerialization (re-calculating) may
occasionally be more efficient than holding results in cache. This is the
somewhat non-intuitive belief that it can be faster to re-calculate from the
input - even if the answer is already known - when it can be shown, in
some special cases, to decrease ‚register pressure‛. Some optimizing

176 Artificial Intelligence : Making a System Intelligent

compilers have the ability to decide when this is considered worthwhile
based on a number of criteria such as complexity and no side effects, and
works by keeping track of the expression used to compute each variable,
using the concept of available expressions. This is most likely to be true
when a calculation is very fast (such as addition or bitwise operations),
while the amount of data which must be cached would be very large,
resulting in inefficient storage. Small amounts of data can be stored very
efficiently in registers or fast cache, while in most contemporary computers
large amounts of data must be stored in slower memory or even slower
hard drive storage, and thus the efficiency of storing data which can be
computed quickly drops significantly.

Precomputation

Precomputing a complete range of results prior to compiling, or at the
beginning of an algorithm’s execution, can often increase algorithmic
efficiency substantially. This becomes advantageous when one or more
inputs is constrained to a small enough range that the results can be stored
in a reasonably sized block of memory. Because memory access is essentially
constant in time complexity (except for caching delays), any algorithm
with a component which has worse than constant efficiency over a small
input range can be improved by precomputing values. In some cases
efficient approximation algorithms can be obtained by computing a discrete
subset of values and interpolating for intermediate input values, since
interpolation is also a linear operation.

Transmission Size

Data compression algorithms can be useful because they help reduce
the consumption of expensive resources, such as hard disk space or
transmission bandwidth. This however also comes at a cost - which is
additional processing time to compress and subsequently decompress.
Depending upon the speed of the data transfer, compression may reduce
overall response times which, ultimately, equates to speed - even though
processing within the computer itself takes longer. For audio, MP3 is a
compression method used extensively in portable sound systems. The
efficiency of a data compression algorithm relates to the compression
factor and speed of achieving both compression and decompression. For
the purpose of archiving an extensive database, it might be considered
worthwhile to achieve a very high compression ratio, since decompression
is less likely to occur on the majority of the data.

Artificial Intelligence in Software Metrics for Algorithmic Trading 177

Data Presentation

Output data can be presented to the end user in many ways - such
as via punched tape or card, digital displays, local display monitors,
remote computer monitors or printed. Each of these has its own inherent
initial cost and, in some cases, an ongoing cost (e.g. refreshing an image
from memory). As an example, the web site ‚Google‛ recently showed,
as its logo, an image of the Vancouver olympics that is around 8K of gif
image. The normally displayed Google image is a PNG image of 28K (or
48K), yet the raw text string for ‚Google‛ occupies only 6 octets or 48 bits
(4,778 or 8192 times less).

This graphically illustrates that how data is presented can significantly
effect the overall efficiency of transmission (and also the complete algorithm

- since both GIF and PNG images require yet more processing). It is
estimated by ‚Internet World Stats‛ that there were 1,733,993,741 internet
users in 2009 and, to transmit this new image to each one of them, would
require around 136,000 billion (109)octets of data to be transmitted - at least
once - into their personal web cache. In ‚Computational Energy Cost of
TCP‛, co-authors Bokyung Wang and Suresh Singh examine the energy
costs for TCP and calculated, for their chosen example, a cost of 0.022
Joules per packet (of approx 1489 octets). On this basis, a total of around
2,000,000,000 joules (2 GJ) of energy might be expended by TCP elements
alone to display the new logo for all users for the first time. To maintain
or re-display this image requires still more processing and consequential
energy cost (in contrast to printed output for instance).

Encoding and Decoding Methods (Compared and Contrasted)

When data is encoded for any ‘external’ use, it is possible to do so in
an almost unlimited variety of different formats that are sometimes

conflicting. This content encoding (of the raw data) may be designed for:

• optimal readability – by humans

• optimal decoding speed – by other computer programmes

• optimal compression – for archiving or data transmission

• optimal compatibility – with ‚legacy‛ or other existing formats or

programming languages

• optimal security – using encryption

(For character level encoding, see the various encoding

techniques such as EBCDIC or ASCII)

178 Artificial Intelligence : Making a System Intelligent

It is unlikely that all of these goals could be met with a single ‘generic’
encoding scheme and so a compromise will often be the desired goal and
will often be compromised by the need for standardization and/or legacy
and compatibility issues.

Encoding Efficiently

For data encoding whose destination is to be input for further computer
processing, readability is not an issue – since the receiving processors
algorithm can decode the data to any other desirable form including
human readable. From the perspective of algorithmic efficiency, minimizing
subsequent decoding (with zero or minimal parsing) should take highest
priority.

The general rule of thumb is that any encoding system that
‘understands’ the underlying data structure - sufficiently to encode it in
the first place - should be equally capable of easily encoding it in such a
way that makes decoding it highly efficient. For variable length data with
possibly omitted data values, for instance, this almost certainly means the
utilization of declarative notation (i.e. including the length of the data item
as a prefix to the data so that a de-limiter is not required and parsing
completely eliminated). For keyword data items, tokenizing the key to an
index (integer) after its first occurrence not only reduces subsequent data
size but, furthermore, reduces future decoding overhead for the same
items that are repeated. For more ‘generic’ encoding for efficient data
compression see Arithmetic encoding and entropy encoding articles.

Historically, optimal encoding was not only worthwhile from an
efficiency standpoint but was also common practise to conserve valuable
memory, external storage and processor resources. Once validated a country
name for example could be held as a shorter sequential country code
which could then also act as an index for subsequent ‘decoding’, using this
code as an entry number within a table or record number within a file.
If the table or file contained fixed length entries, the code could easily be
converted to an absolute memory address or disk address for fast retrieval.
The ISBN system for identifying books is a good example of a practical
encoding method which also contains a built-in hierarchy. According to
recent articles in New Scientist and Scientific American; ‚TODAY’S
telecommunications networks could use one ten-thousandth of the power
they presently consume if smarter data-coding techniques were used‛,
according to Bell Labs, based in Murray Hill, New Jersey It recognizes that
this is only a theoretical limit but nevertheless sets itself a more realistic,

Artificial Intelligence in Software Metrics for Algorithmic Trading 179

practical goal of a 1,000 fold reduction within 5 years with future, as yet

unidentified, technological changes.

Examples of Several Common Encoding Methods

• Comma separated values (CSV - a list of data values separated by

commas)

• Tab separated values (TSV) - a list of data values separated by ‘tab’
characters

• HyperText Markup Language (HTML) - the predominant markup

language for web pages

• Extensible Markup Language (XML) - a generic framework for

storing any amount of text or any data whose structure can be

represented as a tree with at least one element - the root element.

• JavaScript Object Notation (JSON) - human-readable format for

representing simple data structures

The last of these, (JSON) is apparently widely used for internet data
transmission, primarily it seems because the data can be uploaded by a
single JavaScript ‘eval’ statement - without the need to produce what
otherwise would likely have been a more efficient purpose built encoder/
decoder. There are in fact quite large amounts of repeated (and therefore
redundant data) in this particular format, and also in HTML and XML
source, that could quite easily be eliminated. XML is recognized as a
verbose form of encoding. Binary XML has been put forward as one
method of reducing transfer and processing times for XML and, while
there are several competing formats, none has been widely adopted by a
standards organization or accepted as a de facto standard. It has also been
criticized by Jimmy Zhang for essentially trying to solve the wrong problem
There are a number of freely available products on the market that partially
compress HTML files and perform some or all of the following:

• merge lines

• remove unnecessary whitespace characters

• remove unnecessary quotation marks. For example, BORDER=‛0"
will be replaced with BORDER=0)

• replace some tags with shorter ones (e.g. replace STRIKE tags with

S, STRONG with B and EM with I)

• remove HTML comments (comments within scripts and styles are
not removed)

180 Artificial Intelligence : Making a System Intelligent

• remove <!DOCTYPE..> tags

• remove named meta tags

The effect of this limited form of compression is to make the HTML
code smaller and faster to load, but more difficult to read manually (so
the original HTML code is usually retained for updating), but since it is
predominantly meant to be processed only by a browser, this causes no
problems. Despite these small improvements, HTML, which is the
predominant language for the web still remains a predominantly source

distributed, interpreted markup language, with high redundancy.

Kolmogorov Complexity

The study of encoding techniques has been examined in depth in an
area of computer science characterized by a method known as Kolmogorov
complexity where a value known as (‘K’) is accepted as ‘not a computable
function’. The Kolmogorov complexity of any computable object is the
length of the shortest programme that computes it and then halts. The
invariance theorem shows that it is not really important which computer
is used. Essentially this implies that there is no automated method that
can produce an optimum result and is therefore characterized by a
requirement for human ingenuity or Innovation. See also Algorithmic
probability.

Effect of Programming Paradigms

The effect that different programming paradigms have on algorithmic
efficiency is fiercely contested, with both supporters and antagonists for
each new paradigm.

Strong supporters of structured programming, such as Dijkstra for
instance, who favour entirely goto-less programmes are met with conflicting
evidence that appears to nullify its supposed benefits. The truth is, even
if the structured code itself contains no gotos, the optimizing compiler that
creates the binary code almost certainly generates them (and not necessarily
in the most efficient way). Similarly, OOP protagonists who claim their
paradigm is superior are met with opposition from strong sceptics such
as Alexander Stepanov who suggested that OOP provides a mathematically
limited viewpoint and called it, ‚almost as much of a hoax as Artificial
Intelligence‛ In the long term, benchmarks, using real-life examples, provide
the only real hope of resolving such conflicts - at least in terms of run-
time efficiency.

Artificial Intelligence in Software Metrics for Algorithmic Trading 181

Optimization Techniques

The word optimize is normally used in relation to an existing algorithm/
computer programme (i.e. to improve upon completed code). In this section
it is used both in the context of existing programmes and also in the design
and implementation of new algorithms, thereby avoiding the most common
performance pitfalls. It is clearly wasteful to produce a working programme

- at first using an algorithm that ignores all efficiency issues - only to then
have to redesign or rewrite sections of it if found to offer poor performance.
Optimization can be broadly categorized into two domains:-

• Environment specific - that are essentially worthwhile only on
certain platforms or particular computer languages

• General techniques - that apply irrespective of platform

Environment Specific

Optimization of algorithms frequently depends on the properties of
the machine the algorithm will be executed on as well as the language the
algorithm is written in and chosen data types. For example, a programmer
might optimize code for time efficiency in an application for home
computers (with sizable amounts of memory), but for code destined to be
embedded in small, ‚memory-tight‛ devices, the programmer may have
to accept that it will run more slowly, simply because of the restricted
memory available for any potential software optimization. For a discussion
of hardware performance, see article on Computer performance which
covers such things as CPU clock speed, cycles per instruction and other
relevant metrics. For a discussion on how the choice of particular
instructions available on a specific machine effect efficiency, see later
section ‘Choice of instruction and data type’.

General Techniques

• Linear search such as unsorted table look-ups in particular can be
very expensive in terms of execution time but can be reduced
significantly through use of efficient techniques such as indexed
arrays and binary searches. Using a simple linear search on first
occurrence and using a cached result thereafter is an obvious
compromise.

• Use of indexed programme branching, utilizing branch tables or
‚threaded code‛ to control programme flow, (rather than using
multiple conditional IF statements or unoptimized CASE/SWITCH)

182 Artificial Intelligence : Making a System Intelligent

can drastically reduce instruction path length, simultaneously reduce
programme size and even also make a programme easier to read
and more easily maintainable (in effect it becomes a ‘decision table’
rather than repetitive spaghetti code).

• Loop unrolling performed manually, or more usually by an
optimizing compiler, can provide significant savings in some
instances. By processing ‘blocks’ of several array elements at a time,
individually addressed, (for example, within a While loop), much
pointer arithmetic and end of loop testing can be eliminated, resulting
in decreased instruction path lengths. Other Loop optimizations are
also possible.

Tunnel Vision

There are many techniques for improving algorithms, but focusing on
a single favourite technique can lead to a ‚tunnel vision‛ mentality. For
example, in this X86 assembly example, the author offers loop unrolling
as a reasonable technique that provides some 40% improvements to his
chosen example. However, the same example would benefit significantly
from both inlining and use of a trivial hash function. If they were
implemented, either as alternative or complementary techniques, an even
greater percentage gain might be expected. A combination of optimizations
may provide ever increasing speed, but selection of the most easily
implemented and most effective technique, from a large repertoire of such
techniques, is desirable as a starting point.

Dependency Trees and Spreadsheets

Spreadsheets are a ‘special case’ of algorithms that self-optimize by
virtue of their dependency trees that are inherent in the design of
spreadsheets to reduce re-calculations when a cell changes. The results of
earlier calculations are effectively cached within the workbook and only
updated if another cells changed value effects it directly.

Table Lookup

Table lookups can make many algorithms more efficient, particularly
when used to bypass computations with a high time complexity. However,
if a wide input range is required, they can consume significant storage
resources. In cases with a sparse valid input set, hash functions can be used
to provide more efficient lookup access than a full table.

Artificial Intelligence in Software Metrics for Algorithmic Trading 183

Hash Function Algorithms

A hash function is any well-defined procedure or mathematical function
which converts a large, possibly variable-sized amount of data into a small
datum, usually a single integer that may serve as an index to an array. The
values returned by a hash function are called hash values, hash codes, hash
sums, or simply hashes. Hash functions are frequently used to speed up
table lookups. The choice of a hashing function (to avoid a linear or brute
force search) depends critically on the nature of the input data, and their
probability distribution in the intended application.

Trivial Hash Function

Sometimes if the datum is small enough, a ‚trivial hash function‛ can
be used to effectively provide constant time searches at almost zero cost.
This is particularly relevant for single byte lookups (e.g. ASCII or EBCDIC
characters)

Searching Strings

Searching for particular text strings (for instance ‚tags‛ or keywords)
in long sequences of characters potentially generates lengthy instruction
paths. This includes searching for delimiters in comma separated files or
similar processing which can be very simply and effectively eliminated
(using declarative notation for instance). Several methods of reducing the
cost for general searching have been examined and the ‚Boyer–Moore
string search algorithm‛ (or Boyer–Moore–Horspool algorithm, a similar
but modified version) is one solution that has been proven to give superior
results to repetitive comparisons of the entire search string along the
sequence.

Hot Spot Analyzers

Special system software products known as ‚performance analyzers‛
are often available from suppliers to help diagnose ‚hot spots‛ - during
actual execution of computer programmes - using real or test data - they
perform a Performance analysis under generally repeatable conditions.
They can pinpoint sections of the programme that might benefit from
specifically targeted programmer optimization without necessarily
spending time optimizing the rest of the code. Using programme re-runs,
a measure of relative improvement can then be determined to decide if
the optimization was successful and by what amount. Instruction Set
Simulators can be used as an alternative to measure the instruction path

184 Artificial Intelligence : Making a System Intelligent

length at the machine code level between selected execution paths, or on
the entire execution. Regardless of the type of tool used, the quantitative
values obtained can be used in combination with anticipated reductions
(for the targeted code) to estimate a relative or absolute overall saving. For
example if 50% of the total execution time (or path length) is absorbed in
a subroutine whose speed can be doubled by programmer optimization,
an overall saving of around 25% might be expected (Amdahl law). Efforts
have been made at the University of California, Irvine to produce dynamic
executable code using a combination of hot spot analysis and run-time
programme trace tree. A JIT like dynamic compiler was built by Andreas
Gal and others, ‚in which relevant (i.e., frequently executed) control flows
are ...discovered lazily during execution‛

Benchmarking & Competitive Algorithms

For new versions of software or to provide comparisons with
competitive systems, benchmarks are sometimes used which assist with
gauging an algorithms relative performance. If a new sort algorithm is
produced for example it can be compared with its predecessors to ensure
that at least it is efficient as before with known data - taking into
consideration any functional improvements. Benchmarks can be used by
customers when comparing various products from alternative suppliers
to estimate which product will best suit their specific requirements in
terms of functionality and performance. For example in the mainframe
world certain proprietary sort products from independent software
companies such as Syncsort compete with products from the major suppliers
such as IBM for speed. Some benchmarks provide opportunities for
producing an analysis comparing the relative speed of various compiled
and interpreted languages for example and The Computer Language

Benchmarks Game compares the performance of implementations of typical
programming problems in several programming languages. (Even creating
‚do it yourself‛ benchmarks to get at least some appreciation of the
relative performance of different programming languages, using a variety
of user specified criteria, is quite simple to produce as this ‚Nine language
Performance roundup‛ by Christopher W. Cowell-Shah demonstrates by
example)

Compiled Versus Interpreted Languages

A compiled algorithm will, in general, execute faster than the equivalent

interpreted algorithm simply because some processing is required even

Artificial Intelligence in Software Metrics for Algorithmic Trading 185

at run time to ‘understand’ (i.e. interpret) the instructions to effect an
execution. A compiled programme will normally output an object or
machine code equivalent of the algorithm that has already been processed
by the compiler into a form more readily executed by microcode or the
hardware directly. The popular Perl language is an example of an interpreted
language and benchmarks indicate that it executes approximately 24 times
more slowly than compiled C.

Optimizing Compilers

Many compilers have features that attempt to optimize the code they
generate, utilizing some of the techniques outlined in this study and others
specific to the compilation itself. Loop optimization is often the focus of
optimizing compilers because significant time is spent in programme
loops and parallel processing opportunities can often be facilitated by
automatic code re-structuring such as loop unrolling. Optimizing compilers
are by no means perfect. There is no way that a compiler can guarantee
that, for all programme source code, the fastest (or smallest) possible
equivalent compiled programme is output; such a compiler is fundamentally
impossible because it would solve the halting problem. Additionally, even
optimizing compilers generally have no access to runtime metrics to enable
them to improve optimization through ‘learning’.

Just-in-Time Compilers

‘On-the-fly’ processors known today as just-in-time or ‘JIT’ compilers
combine features of interpreted languages with compiled languages and
may also incorporate elements of optimization to a greater or lesser extent.
Essentially the JIT compiler can compile small sections of source code
statements (or bytecode) as they are newly encountered and (usually)
retain the result for the next time the same source is processed. In addition,
pre-compiled segments of code can be in-lined or called as dynamic
functions that themselves perform equally fast as the equivalent ‘custom’
compiled function. Because the JIT processor also has access to run-time
information (that a normal compiler can’t have) it is also possible for it
to optimize further executions depending upon the input and also perform
other run-time introspective optimization as execution proceeds. A JIT
processor may, or may not, incorporate self modifying code or its equivalent
by creating ‘fast path’ routes through an algorithm. It may also use such
techniques as dynamic Fractional cascading or any other similar runtime
device based on collected actual runtime metrics. It is therefore entirely

186 Artificial Intelligence : Making a System Intelligent

possible that a JIT compiler might (counter intuitively) execute even faster

than an optimally ‘optimized’ compiled programme.

Self-Modifying Code

As mentioned above, just-in-time compilers often make extensive use
of self-modifying code to generate the actual machine instructions required
to be executed.

The technique can also be used to reduce instruction path lengths in
application programmes where otherwise repetitive conditional tests might
otherwise be required within the main programme flow. This can be
particularly useful where a sub routine may have embedded debugging
code that is either active (testing mode) or inactive (production mode)
depending upon some input parameter. A simple solution using a form
of dynamic dispatching is where the sub routine entry point is dynamically
‘swapped’ at initialization, depending upon the input parameter. Entry
point A) includes the debugging code prologue and entry point B) excludes
the prologue; thus eliminating all overhead except the initial ‘test and
swap’ (even when test/debugging is selected, when the overhead is simply
the test/debugging code itself).

Genetic Algorithm

In the world of performance related algorithms it is worth mentioning
the role of genetic algorithms which compete using similar methods to the
natural world in eliminating inferior algorithms in favour of more efficient
versions.

Object Code Optimizers

Some proprietary programme optimizers such as the ‚COBOL
Optimizer‛ developed by Capex Corporation in the mid 1970’s for COBOL,
actually took the unusual step of optimizing the Object code (or binary
file) after normal compilation. This type of optimizer, recently sometimes
referred to as a ‚post pass‛ optimizer or peephole optimizer, depended,
in this case, upon knowledge of ‘weaknesses’ in the standard IBM COBOL
compiler and actually replaced (or patched) sections of the object code
with more efficient code. A number of other suppliers have recently adopted
the same approach.

Alignment of Data

Most processors execute faster if certain data values are aligned on

Artificial Intelligence in Software Metrics for Algorithmic Trading 187

word, doubleword or page boundaries. If possible design/specify structures

to satisfy appropriate alignments. This avoids exceptions.

Locality of Reference

To reduce Cache miss exceptions by providing good spatial locality
of reference, specify ‘high frequency’/volative working storage data within
defined structure(s) so that they are also allocated from contiguous sections
of memory (rather than possibly scattered over many pages). Group closely
related data values also ‘physically’ close together within these structures.
Consider the possibility of creating an ‘artificial’ structure to group some
otherwise unrelated, but nevertheless frequently referenced, items together.

Choice of Instruction or Data Type

Particularly in an Assembly language (although also applicable to
HLL statements), the choice of a particular ‘instruction’ or data type, can
have a large impact on execution efficiency.

In general, instructions that process variables such as signed or
unsigned 16-bit or 32-bit integers are faster than those that process floating
point or packed decimal. Modern processors are even capable of executing
multiple ‘fixed point’ instructions in parallel with the simultaneous
execution of a floating point instruction.

If the largest integer to be encountered can be accommodated by the
‘faster’ data type, defining the variables as that type will result in faster
execution - since even a non-optimizing compiler will, in-effect, be ‘forced’
to choose appropriate instructions that will execute faster than would have
been the case with data types associated with ‘slower’ instructions.
Assembler programmers (and optimizing compiler writers) can then also
benefit from the ability to perform certain common types of arithmetic for
instance - division by 2, 4, 8 etc. by performing the very much faster binary
shift right operations (in this case by 1, 2 or 3 bits). If the choice of input
data type is not under the control of the programmer, although prior
conversion (outside of a loop for instance) to a faster data type carries some
overhead, it can often be worthwhile if the variable is then to be used as
a loop counter, especially if the count could be quite a high value or there
are many input values to process.

As mentioned above, choice of individual assembler instructions (or
even sometimes just their order of execution) on particular machines can
effect the efficiency of an algorithm.

188 Artificial Intelligence : Making a System Intelligent

See Assembly Optimization Tips for one quite numerous arcane list
of various technical (and sometimes non-intuitive) considerations for choice
of assembly instructions on different processors that also discusses the
merits of each case. Sometimes microcode or hardware quirks can result
in unexpected performance differences between processors that assembler
programmers can actively code for - or else specifically avoid if penalties
result - something even the best optimizing compiler may not be designed
to handle.

Data Granularity

The greater the granularity of data definitions (such as splitting a
geographic address into separate street/city/postal code fields) can have
performance overhead implications during processing. Higher granularity
in this example implies more procedure calls in Object-oriented
programming and parallel computing environments since the additional
objects are accessed via multiple method calls rather than perhaps one.

Subroutine Granularity

For structured programming and procedural programming in general,

great emphasis is placed on designing programmes as a hierarchy of (or

at least a set of) subroutines.

For object oriented programming, the method call (a subroutine call)
is the standard method of testing and setting all values in objects and so
increasing data granularity consequently causes increased use of
subroutines.

The greater the granularity of subroutine usage, the larger the
proportion of processing time devoted to the mechanism of the subroutine
linkages themselves.The presence of a (called) subroutine in a programme
contributes nothing extra to the functionality of the programme. The extent
to which subroutines (and their consequent memory requirements)
influences the overall performance of the complete algorithm depends to
a large extent on the actual implementation.

In assembly language programmes, the invocation of a subroutine
need not involve much overhead, typically adding just a couple of machine
instructions to the normal instruction path length, each one altering the
control flow either to the subroutine or returning from it (saving the state
on a stack being optional, depending on the complexity of the subroutine
and its requirement to reuse general purpose registers). In many cases,
small subroutines that perform frequently used data transformations using

Artificial Intelligence in Software Metrics for Algorithmic Trading 189

‘general purpose’ work areas can be accomplished without the need to
save or restore any registers, including the return register.

By contrast, HLL programmes typically always invoke a ‘standard’
procedure call (the calling convention), which involves saving the programme
state by default and usually allocating additional memory on the stack to
save all registers and other relevant state data (the prologue and epilogue
code). Recursion in a HLL programme can consequently consume significant
overhead in both memory and execution time managing the stack to the
required depth.

Guy Steele pointed out in a 1977 paper that a well-designed programming
language implementation can have very low overheads for procedural
abstraction (but laments, in most implementations, that they seldom achieve
this in practice - being ‚rather thoughtless or careless in this regard‛).
Steele concludes that ‚we should have a healthy respect for procedure
calls‛ (because they are powerful) but he also cautioned ‚use them
sparingly‛ See section Avoiding costs for discussion of how inlining
subroutines can be used to improve performance.

For the Java language, use of the ‚final‛ keyword can be used to force
method inlining (resulting in elimination of the method call, no dynamic
dispatch and the possibility to constant-fold the value - with no code
executed at runtime)

Choice of Language / Mixed Languages

Some computer languages can execute algorithms more efficiently
than others. As stated already, interpreted languages often perform less
efficiently than compiled languages. In addition, where possible, ‘high-
use’, and time-dependent sections of code may be written in a language
such as assembler that can usually execute faster and make better use of
resources on a particular platform than the equivalent HLL code on the
same platform. This section of code can either be statically called or
dynamically invoked (external function) or embedded within the higher
level code (e.g. Assembler instructions embedded in a ‘C’ language
program).

The effect of higher levels of abstraction when using a HLL has been
described as the Abstraction penalty Programmers who are familiar with
assembler language (in addition to their chosen HLL) and are also familiar
with the code that will be generated by the HLL, under known conditions,
can sometimes use HLL language primitives of that language to generate

190 Artificial Intelligence : Making a System Intelligent

code almost identical to assembler language. This is most likely to be
possible only in languages that support pointers such as PL/1 or C. This
is facilitated if the chosen HLL compiler provides an optional assembler
listing as part of its printout so that various alternatives can be explored
without also needing specialist knowledge of the compiler internals.

Software Validation Versus Hardware Validation

An optimization technique that was frequently taken advantage of on
‘legacy’ platforms was that of allowing the hardware (or microcode) to
perform validation on numeric data fields such as those coded in (or
converted to) packed decimal (or packed BCD). The choice was to either
spend processing time checking each field for a valid numeric content in
the particular internal representation chosen or simply assume the data
was correct and let the hardware detect the error upon execution. The
choice was highly significant because to check for validity on multiple
fields (for sometimes many millions of input records), it could occupy
valuable computer resources. Since input data fields were in any case
frequently built from the output of earlier computer processing, the actual
probability of a field containing invalid data was exceedingly low and
usually the result of some ‘corruption’. The solution was to incorporate
an ‘event handler’ for the hardware detected condition (‘data exception)’
that would intercept the occasional errant data field and either ‘report,
correct and continue’ or, more usually, abort the run with a core dump to
try to determine the reason for the bad data.

Similar event handlers are frequently utilized in today’s web based
applications to handle other exceptional conditions but repeatedly parsing
data input, to ensure its validity before execution, has nevertheless become
much more commonplace - partly because processors have become faster
(and the perceived need for efficiency in this area less significant) but,
predominantly - because data structures have become less ‘formalized’
(e.g. .csv and .tsv files) or uniquely identifiable (e.g. packed decimal). The
potential savings using this type of technique may have therefore fallen
into general dis-use as a consequence and therefore repeated data
validations and repeated data conversions have become an accepted
overhead. Ironically, one consequence of this move to less formalized data
structures is that a corruption of say, a numeric binary integer value, will
not be detected at all by the hardware upon execution (for instance: is an
ASCII hexadecimal value ‘20202020’ a valid signed or unsigned binary
value - or simply a string of blanks that has corrupted it?)

Artificial Intelligence in Software Metrics for Algorithmic Trading 191

Algorithms for Vector & Superscalar Processors

Algorithms for vector processors are usually different than those for
scalar processors since they can process multiple instructions and/or
multiple data elements in parallel. The process of converting an algorithm
from a scalar to a vector process is known as vectorization and methods
for automatically performing this transformation as efficiently as possible
are constantly sought. There are intrinsic limitations for implementing
instruction level parallelism in Superscalar processors but, in essence, the
overhead in deciding for certain if particular instruction sequences can be
processed in parallel can sometimes exceed the efficiency gain in so doing.
The achievable reduction is governed primarily by the (somewhat obvious)
law known as Amdahl’s law, that essentially states that the improvement
from parallel processing is determined by its slowest sequential component.
Algorithms designed for this class of processor therefore require more care
if they are not to unwittingly disrupt the potential gains.

Avoiding Costs

• Defining variables as integers for indexed arrays instead of floating

point will result in faster execution.

• Defining structures whose structure length is a multiple of a power
of 2 (2,4,8,16 etc.), will allow the compiler to calculate array indexes
by shifting a binary index by 1, 2 or more bits to the left, instead
of using a multiply instruction will result in faster execution. Adding
an otherwise redundant short filler variable to ‘pad out’ the length
of a structure element to say 8 bytes when otherwise it would have
been 6 or 7 bytes may reduce overall processing time by a worthwhile
amount for very large arrays. See for generated code differences for
C as for example.

• Storage defined in terms of bits, when bytes would suffice, may
inadvertently involve extremely long path lengths involving bitwise
operations instead of more efficient single instruction ‘multiple
byte’ copy instructions. (This does not apply to ‘genuine’ intentional
bitwise operations - used for example instead of multiplication or
division by powers of 2 or for TRUE/FALSE flags.)

• Unnecessary use of allocated dynamic storage when static storage

would suffice, can increase the processing overhead substantially

- both increasing memory requirements and the associated allocation/

deallocation path length overheads for each function call.

192 Artificial Intelligence : Making a System Intelligent

• Excessive use of function calls for very simple functions, rather
than in-line statements, can also add substantially to instruction
path lengths and stack/unstack overheads. For particularly time
critical systems that are not also code size sensitive, automatic
or manual inline expansion can reduce path length by eliminating
all the instructions that call the function and return from it. (A
conceptually similar method, loop unrolling, eliminates the
instructions required to set up and terminate a loop by, instead;
repeating the instructions inside the loop multiple times. This
of course eliminates the branch back instruction but may also
increase the size of the binary file or, in the case of JIT built code,
dynamic memory. Also, care must be taken with this method,
that re-calculating addresses for each statement within an
unwound indexed loop is not more expensive than incrementing
pointers within the former loop would have been. If absolute
indexes are used in the generated (or manually created)
unwound code, rather than variables, the code created may
actually be able to avoid generated pointer arithmetic instructions
altogether, using offsets instead).

Memory Management

Whenever memory is automatically allocated (for example in HLL
programmes, when calling a procedure or when issuing a system call), it
is normally released (or ‘freed’/ ‘deallocated’/ ‘deleted’) automatically
when it is no longer required - thus allowing it to be re-used for another
purpose immediately. Some memory management can easily be accomplished
by the compiler, as in this example. However, when memory is explicitly

allocated (for example in OOP when ‚new‛ is specified for an object),
releasing the memory is often left to an asynchronous ‘garbage collector’
which does not necessarily release the memory at the earliest opportunity
(as well as consuming some additional CPU resources deciding if it can
be). The current trend nevertheless appears to be towards taking full
advantage of this fully automated method, despite the tradeoff in efficiency

- because it is claimed that it makes programming easier. Some functional
languages are known as ‘lazy functional languages’ because of the significant
use of garbage collection and can consume much more memory as a result.

• Array processing may simplify programming but use of separate
statements to sum different elements of the same array(s) may
produce code that is not easily optimized and that requires multiple

Artificial Intelligence in Software Metrics for Algorithmic Trading 193

passes of the arrays that might otherwise have been processed in
a single pass. It may also duplicate data if array slicing is used,
leading to increased memory usage and copying overhead.

• In OOP, if an object is known to be immutable, it can be copied
simply by making a copy of a reference to it instead of copying
the entire object. Because a reference (typically only the size of
a pointer) is usually much smaller than the object itself, this
results in memory savings and a boost in execution speed.

Readability, Trade Offs and Trends

One must be careful, in the pursuit of good coding style, not to over-
emphasize efficiency. Frequently, a clean, readable and ‘usable’ design is
much more important than a fast, efficient design that is hard to understand.
There are exceptions to this ‘rule’ (such as embedded systems, where space
is tight, and processing power minimal) but these are rarer than one might
expect. However, increasingly, for many ‘time critical’ applications such
as air line reservation systems, point-of-sale applications, ATMs (cash-
point machines), Airline Guidance systems, Collision avoidance systems
and numerous modern web based applications - operating in a real-time
environment where speed of response is fundamental - there is little
alternative.

Determining if Optimization is Worthwhile

The essential criteria for using optimized code are of course dependent
upon the expected use of the algorithm. If it is a new algorithm and is
going to be in use for many years and speed is relevant, it is worth
spending some time designing the code to be as efficient as possible from
the outset.

If an existing algorithm is proving to be too slow or memory is
becoming an issue, clearly something must be done to improve it. For
the average application, or for one-off applications, avoiding inefficient
coding techniques and encouraging the compiler to optimize where
possible may be sufficient.

One simple way (at least for mathematicians) to determine whether
an optimization is worthwhile is as follows: Let the original time and space
requirements (generally in Big-O notation) of the algorithm be O1 and O2.

Let the new code require N1 and N2 time and space respectively. If N1N2

< O1O2, the optimization should be carried out. However, as mentioned

above, this may not always be true.

194 Artificial Intelligence : Making a System Intelligent

Implications for Algorithmic Efficiency

A recent report, published in December 2007, from Global Action
Plan, a UK-based environmental organization found that computer servers
are ‚at least as great a threat to the climate as SUVs or the global aviation
industry‛ drawing attention to the carbon footprint of the IT industry in
the UK. According to an Environmental Research Letters report published
in September 2008, ‚Total power used by information technology equipment
in data centers represented about 0.5% of world electricity consumption
in 2005. When cooling and auxiliary infrastructure are included, that figure
is about 1%. The total data center power demand in 2005 is equivalent (in
capacity terms) to about seventeen 1000 MW power plants for the world.‛
Some media reports claim that performing two Google searches from a
desktop computer can generate about the same amount of carbon dioxide
as boiling a kettle for a cup of tea, according to new research; however,
the factual accuracy of this comparison is disputed, and the author of the
study in question asserts that the two-searches-tea-kettle statistic is a
misreading of his work.

Greentouch, a recently established consortium of leading Information
and Communications Technology (ICT) industry, academic and non-
governmental research experts, has set itself the mission of reducing reduce
energy consumption per user by a factor of 1000 from current levels. ‚A
thousand-fold reduction is roughly equivalent to being able to power the
world’s communications networks, including the Internet, for three years
using the same amount of energy that it currently takes to run them for
a single day‛.

The first meeting in February 2010 will establish the organization’s
five-year plan, first year deliverables and member roles and responsibilities.
Intellectual property issues will be addressed and defined in the forum’s
initial planning meetings.

The conditions for research and the results of that research will be
high priority for discussion in the initial phase of the research forum’s
development. Computers having become increasingly more powerful over
the past few decades, emphasis was on a ‘brute force’ mentality. This may
have to be reconsidered in the light of these reports and more effort placed
in future on reducing carbon footprints through optimization. It is a timely
reminder that algorithmic efficiency is just another aspect of the more
general thermodynamic efficiency. The genuine economic benefits of an
optimized algorithm are, in any case, that more processing can be done

Artificial Intelligence in Software Metrics for Algorithmic Trading 195

for the same cost or that useful results can be shown in a more timely

manner and ultimately, acted upon sooner.

ALGORITHMIC TRADING

In electronic financial markets, algorithmic trading or automated
trading, also known as algo trading, black-box trading or robo trading, is
the use of computer programmes for entering trading orders with the
computer algorithm deciding on aspects of the order such as the timing,
price, or quantity of the order, or in many cases initiating the order without
human intervention. Algorithmic Trading is widely used by pension funds,
mutual funds, and other buy side (investor driven) institutional traders,
to divide large trades into several smaller trades in order to manage
market impact, and risk. Sell side traders, such as market makers and some
hedge funds, provide liquidity to the market, generating and executing
orders automatically. A special class of algorithmic trading is ‚high-
frequency trading‛ (HFT), in which computers make elaborate decisions
to initiate orders based on information that is received electronically,
before human traders are capable of processing the information they
observe. This has resulted in a dramatic change of the market microstructure,
particularly in the way liquidity is provided.

Algorithmic trading may be used in any investment strategy, including
market making, inter-market spreading, arbitrage, or pure speculation
(including trend following). The investment decision and implementation
may be augmented at any stage with algorithmic support or may operate
completely automatically (‚on auto-pilot‛). A third of all EU and US stock
trades in 2006 were driven by automatic programmes, or algorithms,
according to Boston-based financial services industry research and
consulting firm Aite Group. As of 2009, HFT firms account for 73% of all
US equity trading volume.

In 2006 at the London Stock Exchange, over 40% of all orders were
entered by algo traders, with 60% predicted for 2007. American markets
and European markets generally have a higher proportion of algo trades
than other markets, and estimates for 2008 range as high as an 80%
proportion in some markets.

Foreign exchange markets also have active algo trading (about 25%
of orders in 2006). Futures and options markets are considered to be fairly
easily integrated into algorithmic trading, with about 20% of options volume
expected to be computer generated by 2010. Bond markets are moving

196 Artificial Intelligence : Making a System Intelligent

toward more access to algorithmic traders. One of the main issues regarding
HFT is the difficulty in determining just how profitable it is. A report
released in August 2009 by the TABB Group, a financial services industry
research firm, estimated that the 300 securities firms and hedge funds that
specialize in this type of trading took in roughly US$21 billion in profits
in 2008. Algorithmic and HFT have been the subject of much public debate
since the U.S. Securities and Exchange Commission and the Commodity
Futures Trading Commission implicated them in the May 6, 2010 Flash
Crash, when the Dow Jones Industrial Average suffered its largest intraday
point loss ever to that date, though prices quickly recovered.

History

Computerization of the order flow in financial markets began in the
early 1970s with some landmarks being the introduction of the New York
Stock Exchange’s ‚designated order turnaround‛ system (DOT, and later
SuperDOT) which routed orders electronically to the proper trading post
to be executed manually, and the ‚opening automated reporting system‛
(OARS) which aided the specialist in determining the market clearing
opening price (SOR; Smart Order Routing). Programme trading is defined
by the New York Stock Exchange as an order to buy or sell 15 or more
stocks valued at over US$1 million total. In practice this means that all
programme trades are entered with the aid of a computer. In the 1980s
programme trading became widely used in trading between the S&P500
equity and futures markets. In stock index arbitrage a trader buys (or sells)
a stock index futures contract such as the S&P 500 futures and sells (or
buys) a portfolio of up to 500 stocks (can be a much smaller representative
subset) at the NYSE matched against the futures trade. The programme
trade at the NYSE would be pre-programmed into a computer to enter the
order automatically into the NYSE’s electronic order routing system at a
time when the futures price and the stock index were far enough apart
to make a profit.

At about the same time portfolio insurance was designed to create a
synthetic put option on a stock portfolio by dynamically trading stock
index futures according to a computer model based on the Black-Scholes
option pricing model. Both strategies, often simply lumped together as
‚programme trading‛, were blamed by many people (for example by the
Brady report) for exacerbating or even starting the 1987 stock market
crash. Yet the impact of computer driven trading on stock market crashes
is unclear and widely discussed in the academic community. Financial

Artificial Intelligence in Software Metrics for Algorithmic Trading 197

markets with fully electronic execution and similar electronic
communication networks developed in the late 1980s and 1990s. In the
U.S., decimalization, which changed the minimum tick size from 1/16 of
a dollar (US$0.0625) to US$0.01 per share, may have encouraged algorithmic
trading as it changed the market microstructure by permitting smaller
differences between the bid and offer prices, decreasing the market-makers’
trading advantage, thus increasing market liquidity.

This increased market liquidity led to institutional traders splitting up
orders according to computer algorithms in order to execute their orders
at a better average price. These average price benchmarks are measured
and calculated by computers by applying the time weighted (i.e.
unweighted) average price TWAP or more usually by the volume weighted
average price VWAP. As more electronic markets opened, other algorithmic
trading strategies were introduced.

These strategies are more easily implemented by computers because
machines can react more rapidly to temporary mispricing and examine
prices from several markets simultaneously. For example Stealth (developed
by the Deutsche Bank), Sniper and Guerilla (developed by Credit Suisse),
arbitrage, statistical arbitrage, trend following, and mean reversion. This
type of trading is what is driving the new demand for Low Latency
Proximity Hosting and Global Exchange Connectivity. It is imperative to
understand what is latency when putting together a strategy for electronic
trading. Latency refers to the delay between the transmission of information
from a source and the reception of the information at a destination. Latency
has as a lower bound the speed of light; this corresponds to a few
microseconds per 1,000 kilometers of optical fibre. Any signal regenerating
or routing equipment will introduce greater latency than this speed-of-
light baseline.

Strategies

Trend Following

Trend following is an investment strategy that tries to take advantage
of long-term moves that seem to play out in various markets. The system
aims to work on the market trend mechanism and take benefit from both
sides of the market enjoying the profits from the ups and downs of the stock
or futures markets. Traders who use this approach can use current market
price calculation, moving averages and channel breakouts to determine
the general direction of the market and to generate trade signals. Traders

198 Artificial Intelligence : Making a System Intelligent

who subscribe to a trend following strategy do not aim to forecast or

predict specific price levels; they simply jump on the trend and ride it.

Pair Trading

The pairs trade or pair trading is a market neutral trading strategy
enabling traders to profit from virtually any market conditions: uptrend,
downtrend, or sidewise movement. This trading strategy is categorized
as a statistical arbitrage and convergence trading strategy.

Delta Neutral Strategies

In finance, delta neutral describes a portfolio of related financial
securities, in which the portfolio value remains unchanged due to small
changes in the value of the underlying security.

Such a portfolio typically contains options and their corresponding
underlying securities such that positive and negative delta components
offset, resulting in the portfolio’s value being relatively insensitive to
changes in the value of the underlying security.

Arbitrage

In economics and finance, arbitrage is the practice of taking advantage
of a price difference between two or more markets: striking a combination
of matching deals that capitalize upon the imbalance, the profit being the
difference between the market prices. When used by academics, an arbitrage
is a transaction that involves no negative cash flow at any probabilistic or
temporal state and a positive cash flow in at least one state; in simple
terms, it is the possibility of a risk-free profit at zero cost.

Conditions for Arbitrage

Arbitrage is possible when one of three conditions is met:

1. The same asset does not trade at the same price on all markets (the
‚law of one price‛).

2. Two assets with identical cash flows do not trade at the same price.

3. An asset with a known price in the future does not today trade at
its future price discounted at the risk-free interest rate (or, the asset
does not have negligible costs of storage; as such, for example, this
condition holds for grain but not for securities).

Arbitrage is not simply the act of buying a product in one market and

selling it in another for a higher price at some later time. The transactions

Artificial Intelligence in Software Metrics for Algorithmic Trading 199

must occur simultaneously to avoid exposure to market risk, or the risk that
prices may change on one market before both transactions are complete.
In practical terms, this is generally only possible with securities and financial
products which can be traded electronically, and even then, when each leg
of the trade is executed the prices in the market may have moved. Missing
one of the legs of the trade (and subsequently having to trade it soon after
at a worse price) is called ‘execution risk’ or more specifically ‘leg risk’.
In the simplest example, any good sold in one market should sell for the
same price in another. Traders may, for example, find that the price of
wheat is lower in agricultural regions than in cities, purchase the good,
and transport it to another region to sell at a higher price. This type of
price arbitrage is the most common, but this simple example ignores the
cost of transport, storage, risk, and other factors. ‚True‛ arbitrage requires
that there be no market risk involved. Where securities are traded on more
than one exchange, arbitrage occurs by simultaneously buying in one and
selling on the other.

Mean Reversion

Mean reversion is a mathematical methodology sometimes used for
stock investing, but it can be applied to other processes. In general terms
the idea is that both a stock’s high and low prices are temporary, and that
a stock’s price will tend to have an average price over time. Mean reversion
involves first identifying the trading range for a stock, and then computing
the average price using analytical techniques as it relates to assets, earnings,
etc. When the current market price is less than the average price, the stock
is considered attractive for purchase, with the expectation that the price
will rise. When the current market price is above the average price, the
market price is expected to fall. In other words, deviations from the average
price are expected to revert to the average. The Standard deviation of the
most recent prices (e.g., the last 20) is often used as a buy or sell indicator.
Stock reporting services (such as Yahoo! Finance, MS Investor, Morningstar,
etc.), commonly offer moving averages for periods such as 50 and 100
days. While reporting services provide the averages, identifying the high
and low prices for the study period is still necessary. Mean reversion has
the appearance of a more scientific method of choosing stock buy and sell
points than charting, because precise numerical values are derived from
historical data to identify the buy/sell values, rather than trying to interpret
price movements using charts (charting, also known as technical analysis).

200 Artificial Intelligence : Making a System Intelligent

Scalping

Scalping (trading) is a method of arbitrage of small price gaps created
by the bid-ask spread. Scalpers attempt to act like traditional market
makers or specialists. To make the spread means to buy at the Bid price and
sell at the Ask price, to gain the bid/ask difference. This procedure allows
for profit even when the bid and ask do not move at all, as long as there
are traders who are willing to take market prices. It normally involves
establishing and liquidating a position quickly, usually within minutes or
even seconds. The role of a scalper is actually the role of market makers
or specialists who are to maintain the liquidity and order flow of a product
of a market. A market maker is basically a specialized scalper. The volume
a market maker trades are many times more than the average individual
scalpers. A market maker has a sophisticated trading system to monitor
trading activity. However, a market maker is bound by strict exchange
rules while the individual trader is not. For instance, NASDAQ requires
each market maker to post at least one bid and one ask at some price level,
so as to maintain a two-sided market for each stock represented.

Transaction Cost Reduction

Most strategies referred to as Algorithmic Trading (as well as
algorithmic liquidity seeking) fall into the cost-reduction category. Large
orders are broken down into several smaller orders and entered into the
market over time. This basic strategy is called ‚iceberging‛. The success
of this strategy may be measured by the average purchase price against
the VWAP for the market over that time period. One algorithm designed
to find hidden orders or icebergs is called ‚Stealth‛. Most of these strategies
were first documented in ‘Optimal Trading Strategies’ by Robert Kissell.

Strategies that Only Pertain to Dark Pools

Recently, HFT, which comprises a broad set of buy-side as well as
market making sell side traders, has become more prominent and
controversial. These algorithms or techniques are commonly given names
such as ‚Stealth‛ (developed by the Deutsche Bank), ‚Iceberg‛, ‚Dagger‛,
‚Guerrilla‛, ‚Sniper‛, ‚BASOR‛ (developed by Quod Financial) and
‚Sniffer‛. Yet are at their core quite simple mathematical constructs. Dark
pools are alternative electronic stock exchanges where trading takes place
anonymously, with most orders hidden or ‚iceberged.‛ Gamers or ‚sharks‛
sniff out large orders by ‚pinging‛ small market orders to buy and sell.

Artificial Intelligence in Software Metrics for Algorithmic Trading 201

When several small orders are filled the sharks may have discovered the
presence of a large iceberged order. ‚Now it’s an arms race,‛ said Andrew
Lo, director of the Massachusetts Institute of Technology’s Laboratory for
Financial Engineering. ‚Everyone is building more sophisticated algorithms,
and the more competition exists, the smaller the profits.‛ One of the
unintended adverse effects of algorithmic trading, has been the dramatic
increase in the volume of trade allocations and settlements, as well as the
transaction settlement costs associated with them. Since 2004, there have
been a number of technological advances and service providers by
individuals like Scott Kurland, who have built solutions for aggregating
trades executed across algorithms, in order to counter these rising settlement
costs.

High-Frequency Trading

In the U.S., high-frequency trading (HFT) firms represent 2% of the
approximately 20,000 firms operating today, but account for 73% of all
equity trading volume. As of the first quarter in 2009, total assets under
management for hedge funds with HFT strategies were US$141 billion,
down about 21% from their high. The HFT strategy was first made successful
by Renaissance Technologies. High-frequency funds started to become
especially popular in 2007 and 2008. Many HFT firms are market makers
and provide liquidity to the market which has lowered volatility and
helped narrow Bid-offer spreads making trading and investing cheaper
for other market participants. HFT has been a subject of intense public
focus since the U.S. Securities and Exchange Commission and the
Commodity Futures Trading Commission implicated both algorithmic
and HFT in the May 6, 2010 Flash Crash. High-frequency trading is
quantitative trading that is characterized by short portfolio holding periods.
There are four key categories of HFT strategies: market-making based on
order flow, market-making based on tick data information, event arbitrage
and statistical arbitrage. All portfolio-allocation decisions are made by
computerized quantitative models. The success of HFT strategies is largely
driven by their ability to simultaneously process volumes of information,
something ordinary human traders cannot do.

Market Making

Market making is a set of HFT strategies that involves placing a limit

order to sell (or offer) above the current market price or a buy limit order

(or bid) below the current price in order to benefit from the bid-ask spread.

202 Artificial Intelligence : Making a System Intelligent

Automated Trading Desk, which was bought by Citigroup in July 2007,
has been an active market maker, accounting for about 6% of total volume
on both NASDAQ and the New York Stock Exchange.

Statistical Arbitrage

Another set of HFT strategies is classical arbitrage strategy might
involve several securities such as covered interest rate parity in the foreign
exchange market which gives a relation between the prices of a domestic
bond, a bond denominated in a foreign currency, the spot price of the
currency, and the price of a forward contract on the currency. If the market
prices are sufficiently different from those implied in the model to cover
transactions cost then four transactions can be made to guarantee a risk-
free profit. HFT allows similar arbitrages using models of greater complexity
involving many more than 4 securities. The TABB Group estimates that
annual aggregate profits of low latency arbitrage strategies currently exceed
US$21 billion. A wide range of statistical arbitrage strategies have been
developed whereby trading decisions are made on the basis of deviations
from statistically significant relationships. Like market-making strategies,
statistical arbitrage can be applied in all asset classes.

Event Arbitrage

A subset of risk, merger, convertible, or distressed securities arbitrage
that counts on a specific event, such as a contract signing, regulatory
approval, judicial decision, etc., to change the price or rate relationship of
two or more financial instruments and permit the arbitrageur to earn a
profit. Merger arbitrage also called risk arbitrage would be an example
of this. Merger arbitrage generally consists of buying the stock of a company
that is the target of a takeover while shorting the stock of the acquiring
company. Usually the market price of the target company is less than the
price offered by the acquiring company. The spread between these two
prices depends mainly on the probability and the timing of the takeover
being completed as well as the prevailing level of interest rates. The bet
in a merger arbitrage is that such a spread will eventually be zero, if and
when the takeover is completed. The risk is that the deal ‚breaks‛ and the
spread massively widens.

Low-Latency Trading

HFT is often confused with low-latency trading that uses computers

that execute trades within milliseconds, or ‚with extremely low latency‛

Artificial Intelligence in Software Metrics for Algorithmic Trading 203

in the jargon of the trade. Low-latency trading is highly dependent on
ultra-low latency networks. They profit by providing information, such as
competing bids and offers, to their algorithms microseconds faster than
their competitors. The revolutionary advance in speed has led to the need
for firms to have a real-time, colocated trading platform in order to benefit
from implementing high-frequency strategies. Strategies are constantly
altered to reflect the subtle changes in the market as well as to combat the
threat of the strategy being reverse engineered by competitors. There is
also a very strong pressure to continuously add features or improvements
to a particular algorithm, such as client specific modifications and various
performance enhancing changes (regarding benchmark trading
performance, cost reduction for the trading firm or a range of other
implementations). This is due to the evolutionary nature of algorithmic
trading strategies - they must be able to adapt and trade intelligently,
regardless of market conditions, which involves being flexible enough to
withstand a vast array of market scenarios. As a result, a significant
proportion of net revenue from firms is spent on the R&D of these
autonomous trading systems.

Strategy Implementation

Most of the algorithmic strategies are implemented using modern
programming languages, although some still implement strategies designed
in spreadsheets. Basic models can rely on as little as a linear regression,
while more complex game-theoretic and pattern recognition or predictive
models can also be used to initiate trading. Neural networks and genetic
programming have been used to create these models.

Issues and Developments

Algorithmic trading has been shown to substantially improve market
liquidity among other benefits. However, improvements in productivity
brought by algorithmic trading have been opposed by human brokers and
traders facing stiff competition from computers.

Concerns

‚The downside with these systems is their black box-ness,‛ Mr.
Williams said. ‚Traders have intuitive senses of how the world works. But
with these systems you pour in a bunch of numbers, and something comes
out the other end, and it’s not always intuitive or clear why the black box
latched onto certain data or relationships.‛ ‚The Financial Services

204 Artificial Intelligence : Making a System Intelligent

Authority has been keeping a watchful eye on the development of black
box trading. In its annual report the regulator remarked on the great
benefits of efficiency that new technology is bringing to the market. But
it also pointed out that ‘greater reliance on sophisticated technology and
modelling brings with it a greater risk that systems failure can result in
business interruption’.‛ UK Treasury minister Lord Myners has warned
that companies could become the ‚playthings‛ of speculators because of
automatic high-frequency trading. Lord Myners said the process risked
destroying the relationship between an investor and a company. Other
issues include the technical problem of latency or the delay in getting
quotes to traders, security and the possibility of a complete system
breakdown leading to a market crash. ‚Goldman spends tens of millions
of dollars on this stuff. They have more people working in their technology
area than people on the trading desk...The nature of the markets has
changed dramatically.‛ Algorithmic and HTF were implicated in the May
6, 2010 Flash Crash, when the Dow Jones Industrial Average plunged
about 600 points only to recover those losses within minutes. At the time,
it was the second largest point swing, 1,010.14 points, and the biggest one-
day point decline, 998.5 points, on an intraday basis in Dow Jones Industrial
Average history.

Recent Developments

Financial market news is now being formatted by firms such as Need
To Know News, Thomson Reuters, Dow Jones, and Bloomberg, to be read
and traded on via algorithms. ‚Computers are now being used to generate
news stories about company earnings results or economic statistics as they
are released. And this almost instantaneous information forms a direct
feed into other computers which trade on the news.‛ The algorithms do
not simply trade on simple news stories but also interpret more difficult
to understand news. Some firms are also attempting to automatically
assign sentiment (deciding if the news is good or bad) to news stories so
that automated trading can work directly on the news story. ‚Increasingly,
people are looking at all forms of news and building their own indicators
around it in a semi-structured way,‛ as they constantly seek out new
trading advantages said Rob Passarella, global director of strategy at Dow
Jones Enterprise Media Group. His firm provides both a low latency news
feed and news analytics for traders.

Passarella also pointed to new academic research being conducted on

the degree to which frequent Google searches on various stocks can serve

Artificial Intelligence in Software Metrics for Algorithmic Trading 205

as trading indicators, the potential impact of various phrases and words
that may appear in Securities and Exchange Commission statements and
the latest wave of online communities devoted to stock trading topics.
‚Markets are by their very nature conversations, having grown out of
coffee houses and taverns‛, he said.

So the way conversations get created in a digital society will be used
to convert news into trades, as well, Passarella said. ‚There is a real interest
in moving the process of interpreting news from the humans to the
machines‛ says Kirsti Suutari, global business manager of algorithmic
trading at Reuters. ‚More of our customers are finding ways to use news
content to make money.‛

An example of the importance of news reporting speed to algorithmic
traders was an advertising campaign by Dow Jones (appearances included
page W15 of the Wall Street Journal, on March 1, 2008) claiming that their
service had beaten other news services by 2 seconds in reporting an
interest rate cut by the Bank of England. In July 2007, Citigroup, which
had already developed its own trading algorithms, paid $680 million for
Automated Trading Desk, a 19-year-old firm that trades about 200 million
shares a day. Citigroup had previously bought Lava Trading and OnTrade
Inc.

Technical Design

The technical designs of such systems are not standardized.

Conceptually, the design can be divided into logical units:

1. The data stream unit (the part of the systems that receives data (e.g.

quotes, news) from external sources).

2. The decision or strategy unit

3. The execution unit.

With the wide use of social networks, some systems implement
scanning or screening technologies to read posts of users extracting human
sentiment and influence the trading strategies.

Effects

Though its development may have been prompted by decreasing
trade sizes caused by decimalization, algorithmic trading has reduced
trade sizes further. Jobs once done by human traders are being switched
to computers. The speeds of computer connections, measured in
milliseconds and even microseconds, have become very important. More

206 Artificial Intelligence : Making a System Intelligent

fully automated markets such as NASDAQ, Direct Edge and BATS, in the
US, have gained market share from less automated markets such as the
NYSE. Economies of scale in electronic trading have contributed to lowering
commissions and trade processing fees, and contributed to international
mergers and consolidation of financial exchanges. Competition is
developing among exchanges for the fastest processing times for completing
trades. For example, in June 2007, the London Stock Exchange launched
a new system called TradElect that promises an average 10 millisecond
turnaround time from placing an order to final confirmation and can
process 3,000 orders per second. Since then, competitive exchanges have
continued to reduce latency with turnaround times of 3 milliseconds
available. This is of great importance to high-frequency traders because
they have to attempt to pinpoint the consistent and probable performance
ranges of given financial instruments. These professionals are often dealing
in versions of stock index funds like the E-mini S&Ps because they seek
consistency and risk-mitigation along with top performance. They must
filter market data to work into their software programming so that there
is the lowest latency and highest liquidity at the time for placing stop-
losses and/or taking profits. With high volatility in these markets, this
becomes a complex and potentially nerve-wracking endeavor, where a
small mistake can lead to a large loss. Absolute frequency data play into
the development of the trader’s pre-programmed instructions. Spending
on computers and software in the financial industry increased to $26.4
billion in 2005.

Communication Standards

Algorithmic trades require communicating considerably more
parameters than traditional market and limit orders. A trader on one end
(the ‚buy side‛) must enable their trading system (often called an ‚Order
Management System‛ or ‚Execution Management System‛) to understand
a constantly proliferating flow of new algorithmic order types. The R&D
and other costs to construct complex new algorithmic orders types, along
with the execution infrastructure, and marketing costs to distribute them,
are fairly substantial. What was needed was a way that marketers (the ‚sell
side‛) could express algo orders electronically such that buy-side traders
could just drop the new order types into their system and be ready to trade
them without constant coding custom new order entry screens each time.
FIX Protocol LTD http://www.fixprotocol.org is a trade association that
publishes free, open standards in the securities trading area. The FIX

http://www.fixprotocol.org/

Artificial Intelligence in Software Metrics for Algorithmic Trading 207

language was originally created by Fidelity Investments, and the association
Members include virtually all large and many midsized and smaller broker
dealers, money center banks, institutional investors, mutual funds, etc.
This institution dominates standard setting in the pretrade and trade areas
of security transactions. In 2006-2007 several members got together and
published a draft XML standard for expressing algorithmic order types.
The standard is called FIX Algorithmic Trading Definition Language
(FIXatdl). The first version of this standard, 1.0 was not widely adopted
due to limitations in the specification, but the second version, 1.1 (released
in March 2010) is expected to achieve broad adoption and in the process
dramatically reduce time-to-market and costs associated with distributing
new algorithms.

208 Artificial Intelligence : Making a System Intelligent

Algorithms in Informed Search
and Hill Climbing in AI

AI - POPULAR SEARCH ALGORITHMS

Searching is the universal technique of problem solving in AI. There are

some single-player games such as tile games, Sudoku, crossword, etc. The

search algorithms help you to search for a particular position in such games.

Single Agent Pathfinding Problems

The games such as 3X3 eight-tile, 4X4 fifteen-tile, and 5X5 twenty four
tile puzzles are single-agent-path-finding challenges. They consist of a
matrix of tiles with a blank tile. The player is required to arrange the tiles
by sliding a tile either vertically or horizontally into a blank space with
the aim of accomplishing some objective.

The other examples of single agent pathfinding problems are Travelling

Salesman Problem, Rubik’s Cube, and Theorem Proving.

Search Terminology

• Problem Space ‚ It is the environment in which the search takes
place. (A set of states and set of operators to change those states)

• Problem Instance ‚ It is Initial state + Goal state.

• Problem Space Graph ‚ It represents problem state. States are shown
by nodes and operators are shown by edges.

• Depth of a problem ‚ Length of a shortest path or shortest sequence

of operators from Initial State to goal state.

• Space Complexity ‚ The maximum number of nodes that are stored

in memory.

Algorithms in Informed Search and Hill Climbing in AI 209

• Time Complexity ‚ The maximum number of nodes that are created.

• Admissibility ‚ A property of an algorithm to always find an optimal
solution.

• Branching Factor ‚ The average number of child nodes in the problem
space graph.

• Depth ‚ Length of the shortest path from initial state to goal state.

Brute-Force Search Strategies

They are most simple, as they do not need any domain-specific

knowledge. They work fine with small number of possible states.

Requirements ‚

• State description

• A set of valid operators

• Initial state

• Goal state description

Breadth-First Search

It starts from the root node, explores the neighboring nodes first and
moves towards the next level neighbors. It generates one tree at a time
until the solution is found. It can be implemented using FIFO queue data
structure. This method provides shortest path to the solution.

If branching factor (average number of child nodes for a given node)

= b and depth = d, then number of nodes at level d = bd.

The total no of nodes created in worst case is b + b2 + b3 + < + bd.

Disadvantage ‚ Since each level of nodes is saved for creating next

one, it consumes a lot of memory space. Space requirement to store nodes

is exponential.

Its complexity depends on the number of nodes. It can check duplicate

nodes.

Depth-First Search

It is implemented in recursion with LIFO stack data structure. It
creates the same set of nodes as Breadth-First method, only in the different
order. As the nodes on the single path are stored in each iteration from
root to leaf node, the space requirement to store nodes is linear. With
branching factor b and depth as m, the storage space is bm.

210 Artificial Intelligence : Making a System Intelligent

Disadvantage ‚ This algorithm may not terminate and go on infinitely
on one path. The solution to this issue is to choose a cut-off depth. If the
ideal cut-off is d, and if chosen cut-off is lesser than d, then this algorithm
may fail. If chosen cut-off is more than d, then execution time increases.

Its complexity depends on the number of paths. It cannot check
duplicate nodes.

Bidirectional Search

It searches forward from initial state and backward from goal state
till both meet to identify a common state.

The path from initial state is concatenated with the inverse path from

the goal state. Each search is done only up to half of the total path.

Uniform Cost Search

Sorting is done in increasing cost of the path to a node. It always
expands the least cost node. It is identical to Breadth First search if each
transition has the same cost.

It explores paths in the increasing order of cost.

Disadvantage ‚ There can be multiple long paths with the cost d‛ C*.

Uniform Cost search must explore them all.

Iterative Deepening Depth-First Search

It performs depth-first search to level 1, starts over, executes a complete
depth-first search to level 2, and continues in such way till the solution
is found.

It never creates a node until all lower nodes are generated. It only
saves a stack of nodes. The algorithm ends when it finds a solution at depth

d. The number of nodes created at depth d is bd and at depth d-1 is bd-
1.

Informed (Heuristic) Search Strategies

To solve large problems with large number of possible states, problem-
specific knowledge needs to be added to increase the efficiency of search
algorithms.

Heuristic Evaluation Functions

They calculate the cost of optimal path between two states. A heuristic

function for sliding-tiles games is computed by counting number of moves

Algorithms in Informed Search and Hill Climbing in AI 211

that each tile makes from its goal state and adding these number of moves

for all tiles.

Pure Heuristic Search

It expands nodes in the order of their heuristic values. It creates two
lists, a closed list for the already expanded nodes and an open list for the
created but unexpanded nodes.

In each iteration, a node with a minimum heuristic value is expanded,
all its child nodes are created and placed in the closed list. Then, the
heuristic function is applied to the child nodes and they are placed in the
open list according to their heuristic value. The shorter paths are saved
and the longer ones are disposed.

A * Search

It is best-known form of Best First search. It avoids expanding paths
that are already expensive, but expands most promising paths first.

f(n) = g(n) + h(n), where

• g(n) the cost (so far) to reach the node

• h(n) estimated cost to get from the node to the goal

• f(n) estimated total cost of path through n to goal. It is implemented

using priority queue by increasing f(n).

Greedy Best First Search

It expands the node that is estimated to be closest to goal. It expands
nodes based on f(n) = h(n). It is implemented using priority queue.

Disadvantage ‚ It can get stuck in loops. It is not optimal.

Local Search Algorithms

They start from a prospective solution and then move to a neighboring

solution. They can return a valid solution even if it is interrupted at any

time before they end.

Hill-Climbing Search

It is an iterative algorithm that starts with an arbitrary solution to a
problem and attempts to find a better solution by changing a single element
of the solution incrementally. If the change produces a better solution, an
incremental change is taken as a new solution. This process is repeated
until there are no further improvements.

212 Artificial Intelligence : Making a System Intelligent

function Hill-Climbing (problem), returns a state that is a local

maximum.

inputs: problem, a problem

local variables: current, a node

neighbor, a node

current <-Make_Node(Initial-State[problem])

loop

do neighbor <- a highest_valued successor of current

if Value[neighbor] d” Value[current] then
return State[current]

current <- neighbor

end

Disadvantage ‚ This algorithm is neither complete, nor optimal.

Local Beam Search

In this algorithm, it holds k number of states at any given time. At
the start, these states are generated randomly. The successors of these k
states are computed with the help of objective function. If any of these
successors is the maximum value of the objective function, then the
algorithm stops.

Otherwise the (initial k states and k number of successors of the states
= 2k) states are placed in a pool. The pool is then sorted numerically. The

highest k states are selected as new initial states. This process continues

until a maximum value is reached.

function BeamSearch(problem, k), returns a solution state.

start with k randomly generated states

loop

generate all successors of all k states

if any of the states = solution, then return the

state

else select the k best successors

end

Simulated Annealing

Annealing is the process of heating and cooling a metal to change its
internal structure for modifying its physical properties. When the metal
cools, its new structure is seized, and the metal retains its newly obtained
properties. In simulated annealing process, the temperature is kept variable.

Algorithms in Informed Search and Hill Climbing in AI 213

BEST FIRST SEARCH ALGORITHM IN AI | CONCEPT,

IMPLEMENTATION, ADVANTAGES, DISADVANTAGES

Most of the AI advancements that have caught our attention in the
past have been the ability of the machine to beat humans at playing games.
Be it ‘Deep Blue’ defeating the legendary Gary Kasparov in Chess in 1997
or ‘Alpha Go’ defeating Lee Sudol in 2016, the potential of AI to mimic
and surpass human mental capabilities has exponentially increased over
time.

Search algorithms form the core of such Artificial Intelligence programs.
And while we may be inclined to think that this has limited applicability
only in areas of gaming and puzzle-solving, such algorithms are in fact
used in many more AI areas like route and cost optimizations, action
planning, knowledge mining, robotics, autonomous driving, computational
biology, software and hardware verification, theorem proving etc. In a
way, many AI problems can be modelled as a search problem where the
task is to reach the goal from the initial state via state transformation rules.
So the search space is defined as a graph (or a tree) and the aim is to reach
the goal from the initial state via the shortest path, in terms of cost, length,
a combination of both etc.

All search methods can be broadly classified into two categories:

1. Uninformed (or Exhaustive or Blind) methods, where the search is
carried out without any additional information that is already
provided in the problem statement. Some examples include Breadth-
First Search, Depth First Search etc.

2. Informed (or Heuristic) methods, where the search is carried out

by using additional information to determine the next step towards

finding the solution. BFS is an example of such algorithms

Informed search methods are more efficient, low in cost and high in
performance as compared to uninformed search methods.

What is Best First Search?

If we consider searching as a form of traversal in a graph, an uninformed
search algorithm would blindly traverse to the next node in a given manner
without considering the cost associated with that step. An informed search,
like BFS, on the other hand, would use an evaluation function to decide
which among the various available nodes is the most promising (or ‘BEST’)
before traversing to that node.

214 Artificial Intelligence : Making a System Intelligent

BFS uses the concept of a Priority queue and heuristic search. To
search the graph space, the BFS method uses two lists for tracking the
traversal. An ‘Open’ list that keeps track of the current ‘immediate’ nodes
available for traversal and a ‘CLOSED’ list that keeps track of the nodes
already traversed.

Best First Search Algorithm

1. Create 2 empty lists: OPEN and CLOSED

2. Start from the initial node (say N) and put it in the ‘ordered’ OPEN

list

3. Repeat the next steps until the GOAL node is reached

1. If the OPEN list is empty, then EXIT the loop returning ‘False’
2. Select the first/top node (say N) in the OPEN list and move it to

the CLOSED list. Also, capture the information of the parent node

3. If N is a GOAL node, then move the node to the Closed list and
exit the loop returning ‘True’. The solution can be found by
backtracking the path

4. If N is not the GOAL node, expand node N to generate the
‘immediate’ next nodes linked to node N and add all those to the
OPEN list

5. Reorder the nodes in the OPEN list in ascending order according
to an evaluation function f(n)

This algorithm will traverse the shortest path first in the queue. The

time complexity of the algorithm is given by O(n*logn).

Variants of Best First Search

The two variants of BFS are Greedy Best First Search and A* Best First
Search. Greedy BFS makes use of the Heuristic function and search and
allows us to take advantage of both algorithms.

There are various ways to identify the ‘BEST’ node for traversal and
accordingly there are various flavours of BFS algorithm with different
heuristic evaluation functions f(n). We will cover the two most popular
versions of the algorithm in this blog, namely Greedy Best First Search and
A* Best First Search.

Let’s say we want to drive from city S to city E in the shortest possible
road distance, and we want to do it in the fastest way, by exploring the
least number of cities along the way, i.e. the least number of steps.

Algorithms in Informed Search and Hill Climbing in AI 215

Whenever we arrive at an intermediate city, we get to know the air/

flight distance from that city to our goal city E.

This distance is an approximation of how close we are to the goal from
a given node and is denoted by the heuristic function h(n). This heuristic
value is mentioned within each node. However, note that this is not always
equal to the actual road distance, as the road may have many curves while
moving up a hill, and more.

Also, when we travel from one node to the other, we get to know the
actual road distance between the current city and the immediate next city
on the way which is mentioned over the paths in the given figure. The
sum of the distance from the start city to each of these immediate next
cities is denoted by the function g(n).

At any point, the decision on which city to go to next is governed by

our evaluation function. The city which gives the least value for this

evaluation function will be explored first.

The only difference between Greedy BFS and A* BFS is in the evaluation
function. For Greedy BFS the evaluation function is f(n) = h(n) while for
A* the evaluation function is f(n) = g(n) + h(n).

Essentially, since A* is more optimal of the two approaches as it also

takes into consideration the total distance travelled so far i.e. g(n).

Advantages and Disadvantages of Best First Search

Advantages:

1. Can switch between BFS and DFS, thus gaining the advantages of

both.

2. More efficient when compared to DFS.

Disadvantages:

1. Chances of getting stuck in a loop are higher.

Try changing the graph and see how the algorithms perform on them.
Leave your comments below for any doubts. Don’t forget to check out
popular free Artificial Intelligence courses to upskill in the domain.

AO* SEARCH(GRAPH): CONCEPT, ALGORITHM,

IMPLEMENTATION, ADVANTAGES, DISADVANTAGES

The Depth first search and Breadth first search given earlier for OR

trees or graphs can be easily adopted by AND-OR graph.

216 Artificial Intelligence : Making a System Intelligent

AO* Search: (And-Or) Graph

The Depth first search and Breadth first search given earlier for OR
trees or graphs can be easily adopted by AND-OR graph. The main
difference lies in the way termination conditions are determined, since all
goals following an AND nodes must be realized; where as a single goal
node following an OR node will do. So for this purpose we are using AO*
algorithm.

Like A* algorithm here we will use two arrays and one heuristic
function.

OPEN: It contains the nodes that has been traversed but yet not been

marked solvable or unsolvable.

CLOSE: It contains the nodes that have already been processed.

6 7:The distance from current node to goal node.

Algorithm:

Step 1: Place the starting node into OPEN.

Step 2: Compute the most promising solution tree say T0.

Step 3: Select a node n that is both on OPEN and a member of T0.

Remove it from OPEN and place it in

CLOSE

Step 4: If n is the terminal goal node then leveled n as solved and
leveled all the ancestors of n as solved. If the starting node is marked as
solved then success and exit.

Step 5: If n is not a solvable node, then mark n as unsolvable. If starting

node is marked as unsolvable, then return failure and exit.

Step 6: Expand n. Find all its successors and find their h (n) value,
push them into OPEN.

Step 7: Return to Step 2.

Step 8: Exit.

Implementation

Let us take the following example to implement the AO* algorithm.

Step 1:

In the above graph, the solvable nodes are A, B, C, D, E, F and the
unsolvable nodes are G, H. Take A as the starting node. So place A into
OPEN.

Algorithms in Informed Search and Hill Climbing in AI 217

Advantages: It is an optimal algorithm. If traverse according to the

ordering of nodes. It can be used for both OR and AND graph.

Disadvantages: Sometimes for unsolvable nodes, it can’t find the
optimal path. Its complexity is than other algorithms.

DEFINE BEAM SEARCH

Beam search is a heuristic search algorithm that explores a graph by

expanding the most optimistic node in a limited set. Beam search is an

optimization of best-first search that reduces its memory requirements.

Best-first search is a graph search that orders all partial solutions
according to some heuristic. But in beam search, only a predetermined
number of best partial solutions are kept as candidates. Therefore, it is a
greedy algorithm.

Beam search uses breadth-first search to build its search tree. At each
level of the tree, it generates all successors of the states at the current level,
sorting them in increasing order of heuristic cost. However, it only stores
a predetermined number (â), of best states at each level called the beamwidth.
Only those states are expanded next.

The greater the beam width, the fewer states are pruned. No states
are pruned with infinite beam width, and beam search is identical to
breadth-first search. The beamwidth bounds the memory required to
perform the search. Since a goal state could potentially be pruned, beam
search sacrifices completeness (the guarantee that an algorithm will
terminate with a solution if one exists). Beam search is not optimal, which
means there is no guarantee that it will find the best solution.

In general, beam search returns the first solution found. Once reaching
the configured maximum search depth (i.e., translation length), the
algorithm will evaluate the solutions found during a search at various
depths and return the best one that has the highest probability.

The beam width can either be fixed or variable. One approach that uses
a variable beam width starts with the width at a minimum. If no solution
is found, the beam is widened, and the procedure is repeated.

Components of Beam Search

A beam search takes three components as its input:

1. A problem to be solved,

2. A set of heuristic rules for pruning,

218 Artificial Intelligence : Making a System Intelligent

3. And a memory with a limited available capacity.

The problem is the problem to be solved, usually represented as a
graph, and contains a set of nodes in which one or more of the nodes
represents a goal. The set of heuristic rules are rules specific to the problem
domain and prune unfavorable nodes from memory regarding the problem
domain.

The memory is where the ‚beam‛ is stored, memory is full, and a node

is to be added to the beam, the most costly node will be deleted, such that

the memory limit is not exceeded.

Beam Search Algorithm

The following algorithm for a beam search, as a modified best-first
search, is adapted from Zhang’s 1999:

1. beamSearch(problemSet, ruleSet, memorySize)

2. openMemory = new memory of size memorySize

3. nodeList = problemSet.listOfNodes

4. node = root or initial search node

5. Add node to openMemory;

6. while (node is not a goal node)

7. Delete node from openMemory;

8. Expand node and obtain its children, evaluate those children;

9. If a child node is pruned according to a rule in ruleSet, delete it;

10. Place remaining, non-pruned children into openMemory;

11. If memory is full and has no room for new nodes, remove the worst

12. node, determined by ruleSet, in openMemory;

13. node = the least costly node in openMemory;

Uses of Beam Search

A beam search is most often used to maintain tractability in large
systems with insufficient memory to store the entire search tree. For
example,

• It has been used in many machine translation systems.

• Each part is processed to select the best translation, and many
different ways of translating the words appear.

• According to their sentence structures, the top best translations are

kept, and the rest are discarded. The translator then evaluates the

Algorithms in Informed Search and Hill Climbing in AI 219

translations according to a given criterion, choosing the translation

which best keeps the goals.

• The first use of a beam search was in the Harpy Speech Recognition

System, CMU 1976.

Drawbacks of Beam Search

Here is a drawback of the Beam Search with an example:

• In general, the Beam Search Algorithm is not complete. Despite these
disadvantages, beam search has found success in the practical areas
of speech recognition, vision, planning, and machine learning.

• The main disadvantages of a beam search are that the search may
not result in an optimal goal and may not even reach a goal at all
after given unlimited time and memory when there is a path from
the start node to the goal node.

• The beam search algorithm terminates for two cases: a required

goal node is reached, or a goal node is not reached, and there are

no nodes left to be explored.

220 Artificial Intelligence : Making a System Intelligent

• A more accurate heuristic function and a larger beam width can

improve Beam Search’s chances of finding the goal.

For example, let’s take the value of ß = 2 for the tree shown below.

So, follow the following steps to find the goal node.

Step 1: OPEN= {A}

Step 2: OPEN= {B, C}

Step 3: OPEN= {D, E}

Step 4: OPEN= {E}

Step 5: OPEN= { }

The open set becomes empty without finding the goal node.

Beam Search Optimality

The Beam Search algorithm is not complete in some cases. Therefore

it is also not guaranteed to be optimal. It can happen because of these

reasons:

• The beam width and an inaccurate heuristic function may cause the

algorithm to miss expanding the shortest path.

• A more precise heuristic function and a larger beam width can

make Beam Search more likely to find the optimal path to the goal.

For example, we have a tree with heuristic values shown below:

Follow the following steps to find the path for the goal node.

Step 1: OPEN= {A}

Step 2: OPEN= {B, C}

Step 3: OPEN= {C, E}

Step 4: OPEN= {F, E}

Step 5: OPEN= {G, E}

Step 6: Found the goal node {G}, now stop.

Path: A-> C-> F-> G

But the Optimal Path is A-> D-> G

Time Complexity of Beam Search

The time complexity of the Beam Search algorithm depends on the
following things, such as:

• The accuracy of the heuristic function.

• In the worst case, the heuristic function leads Beam Search to the

deepest level in the search tree.

Algorithms in Informed Search and Hill Climbing in AI 221

• The worst-case time = O(B*m)

B is the beam width, and m is the maximum depth of any path in the
search tree.

Space Complexity of Beam Search

The space complexity of the Beam Search algorithm depends on the
following things, such as:

• Beam Search’s memory consumption is its most desirable trait.

• Since the algorithm only stores B nodes at each level in the search
tree.

• The worst-case space complexity = O(B*m)

B is the beam width, and m is the maximum depth of any path in the
search tree.

222 Artificial Intelligence : Making a System Intelligent

• This linear memory consumption allows Beam Search to probe very
deeply into large search spaces and potentially find solutions that
other algorithms cannot reach.

Variants of Beam Search

Beam search has been made complete by combining it with depth-first

search, resulting in beam stack search and depth-first beam search. With limited
discrepancy search, beam search results in limited discrepancy backtracking

(BULB).

The resulting search algorithms are anytime algorithms that find
reasonable but likely sub-optimal solutions quickly, like beam search, then
backtrack and continue to find improved solutions until convergence to
an optimal solution.

In the context of a local search, we call local beam search a specific
algorithm that begins selecting â generated states. Then, for each level of
the search tree, it always considers â new states among all the possible
successors of the current ones until it reaches a goal.

Since local beam search often ends up on local maxima, a standard
solution is to choose the next â states in a random way, with a probability
dependent on the heuristic evaluation of the states. This kind of search
is called stochastic beam search.

Beam search

In computer science, beam search is a heuristic search algorithm that
explores a graph by expanding the most promising node in a limited set.
Beam search is an optimization of best-first search that reduces its memory
requirements. Best-first search is a graph search which orders all partial
solutions (states) according to some heuristic. But in beam search, only a
predetermined number of best partial solutions are kept as candidates. It
is thus a greedy algorithm.

The term ‚beam search‛ was coined by Raj Reddy of Carnegie Mellon

University in 1977.

Details

Beam search uses breadth-first search to build its search tree. At each
level of the tree, it generates all successors of the states at the current level,
sorting them in increasing order of heuristic cost. However, it only stores
a predetermined number of best states at each level (called the beam

Algorithms in Informed Search and Hill Climbing in AI 223

width). Only those states are expanded next. The greater the beam width,
the fewer states are pruned. With an infinite beam width, no states are
pruned and beam search is identical to breadth-first search. The beam
width bounds the memory required to perform the search. Since a goal
state could potentially be pruned, beam search sacrifices completeness
(the guarantee that an algorithm will terminate with a solution, if one
exists). Beam search is not optimal (that is, there is no guarantee that it
will find the best solution).

Uses

A beam search is most often used to maintain tractability in large
systems with insufficient amount of memory to store the entire search tree.
For example, it has been used in many machine translation systems. (The
state of the art now primarily uses neural machine translation based
methods.) To select the best translation, each part is processed, and many
different ways of translating the words appear. The top best translations
according to their sentence structures are kept, and the rest are discarded.
The translator then evaluates the translations according to a given criterion,
choosing the translation which best keeps the goals. The first use of a beam
search was in the Harpy Speech Recognition System, CMU 1976.

Variants

Beam search has been made complete by combining it with depth-
first search, resulting in beam stack search and depth-first beam search, and
with limited discrepancy search, resulting in beam search using limited
discrepancy backtracking (BULB). The resulting search algorithms are anytime
algorithms that find good but likely sub-optimal solutions quickly, like
beam search, then backtrack and continue to find improved solutions until
convergence to an optimal solution.

INFORMED SEARCH ALGORITHMS

So far we have talked about the uninformed search algorithms which
looked through search space for all possible solutions of the problem
without having any additional knowledge about search space. But informed
search algorithm contains an array of knowledge such as how far we are
from the goal, path cost, how to reach to goal node, etc. This knowledge
help agents to explore less to the search space and find more efficiently
the goal node.

224 Artificial Intelligence : Making a System Intelligent

The informed search algorithm is more useful for large search space.
Informed search algorithm uses the idea of heuristic, so it is also called
Heuristic search.

Heuristics function: Heuristic is a function which is used in Informed
Search, and it finds the most promising path. It takes the current state of
the agent as its input and produces the estimation of how close agent is
from the goal. The heuristic method, however, might not always give the
best solution, but it guaranteed to find a good solution in reasonable time.
Heuristic function estimates how close a state is to the goal. It is represented
by h(n), and it calculates the cost of an optimal path between the pair of
states. The value of the heuristic function is always positive.

Admissibility of the heuristic function is given as:

1. h(n) <= h*(n)

Here h(n) is heuristic cost, and h*(n) is the estimated cost. Hence

heuristic cost should be less than or equal to the estimated cost.

Pure Heuristic Search:

Pure heuristic search is the simplest form of heuristic search algorithms.
It expands nodes based on their heuristic value h(n). It maintains two lists,
OPEN and CLOSED list. In the CLOSED list, it places those nodes which
have already expanded and in the OPEN list, it places nodes which have
yet not been expanded.

On each iteration, each node n with the lowest heuristic value is
expanded and generates all its successors and n is placed to the closed list.
The algorithm continues unit a goal state is found.

In the informed search we will discuss two main algorithms which
are given below:

• Best First Search Algorithm(Greedy search)

• A* Search Algorithm

Best-first Search Algorithm (Greedy Search)

Greedy best-first search algorithm always selects the path which
appears best at that moment. It is the combination of depth-first search
and breadth-first search algorithms. It uses the heuristic function and
search. Best-first search allows us to take the advantages of both algorithms.
With the help of best-first search, at each step, we can choose the most
promising node. In the best first search algorithm, we expand the node

Algorithms in Informed Search and Hill Climbing in AI 225

which is closest to the goal node and the closest cost is estimated by

heuristic function, i.e.

1. f(n)= g(n).

Were, h(n)= estimated cost from node n to the goal.

The greedy best first algorithm is implemented by the priority queue.

Best first search algorithm:

• Step 1: Place the starting node into the OPEN list.

• Step 2: If the OPEN list is empty, Stop and return failure.

• Step 3: Remove the node n, from the OPEN list which has the lowest
value of h(n), and places it in the CLOSED list.

• Step 4: Expand the node n, and generate the successors of node n.

• Step 5: Check each successor of node n, and find whether any node
is a goal node or not. If any successor node is goal node, then return
success and terminate the search, else proceed to Step 6.

• Step 6: For each successor node, algorithm checks for evaluation
function f(n), and then check if the node has been in either OPEN
or CLOSED list. If the node has not been in both list, then add it
to the OPEN list.

• Step 7: Return to Step 2.

226 Artificial Intelligence : Making a System Intelligent

Advantages:

• Best first search can switch between BFS and DFS by gaining the
advantages of both the algorithms.

• This algorithm is more efficient than BFS and DFS algorithms.
Disadvantages:

• It can behave as an unguided depth-first search in the worst case

scenario.

• It can get stuck in a loop as DFS.

• This algorithm is not optimal.

Example:

Consider the below search problem, and we will traverse it using
greedy best-first search. At each iteration, each node is expanded using
evaluation function f(n)=h(n) , which is given in the below table.

In this search example, we are using two lists which are OPEN and
CLOSED Lists. Following are the iteration for traversing the above example.

Expand the nodes of S and put in the CLOSED list

Initialization: Open [A, B], Closed [S]

Algorithms in Informed Search and Hill Climbing in AI 227

Iteration 1: Open [A], Closed [S, B]

Iteration 2: Open [E, F, A], Closed [S, B]

: Open [E, A], Closed [S, B, F]

Iteration 3: Open [I, G, E, A], Closed [S, B, F]

: Open [I, E, A], Closed [S, B, F, G]

Hence the final solution path will be: S——> B——>F——> G

Time Complexity: The worst case time complexity of Greedy best first

search is O(bm).

Space Complexity: The worst case space complexity of Greedy best

first search is O(bm). Where, m is the maximum depth of the search space.

Complete: Greedy best-first search is also incomplete, even if the

given state space is finite.

Optimal: Greedy best first search algorithm is not optimal.

A* Search Algorithm:

A* search is the most commonly known form of best-first search. It
uses heuristic function h(n), and cost to reach the node n from the start
state g(n). It has combined features of UCS and greedy best-first search,
by which it solve the problem efficiently. A* search algorithm finds the
shortest path through the search space using the heuristic function. This
search algorithm expands less search tree and provides optimal result
faster. A* algorithm is similar to UCS except that it uses g(n)+h(n) instead
of g(n). In A* search algorithm, we use search heuristic as well as the cost
to reach the node. Hence we can combine both costs as following, and this
sum is called as a fitness number.

At each point in the search space, only those node is expanded which
have the lowest value of f(n), and the algorithm terminates when the goal
node is found.

228 Artificial Intelligence : Making a System Intelligent

Algorithm of A* search:

The A* search algorithm is a popular pathfinding and graph traversal
method used in various applications like game development and robotics.
It combines the strengths of Dijkstra's algorithm and the Greedy Best-First-
Search by considering both the cost to reach the node (g) and the estimated
cost to reach the goal from that node (h). The algorithm uses a priority
queue to explore nodes with the lowest f(x) = g(x) + h(x) value first. A*
ensures that the shortest path is found efficiently by balancing exploration
of new paths and exploitation of known paths, making it both complete
and optimal.

Step1: Place the starting node in the OPEN list.

Step 2: Check if the OPEN list is empty or not, if the list is empty then
return failure and stops.

Step 3: Select the node from the OPEN list which has the smallest

value of evaluation function (g+h), if node n is goal node then return

success and stop, otherwise

Step 4: Expand node n and generate all of its successors, and put n

into the closed list. For each successor n’, check whether n’ is already in
the OPEN or CLOSED list, if not then compute evaluation function for n’
and place into Open list.

Step 5: Else if node n’ is already in OPEN and CLOSED, then it should

be attached to the back pointer which reflects the lowest g(n’) value.

Step 6: Return to Step 2.

Advantages:

• A* search algorithm is the best algorithm than other search

algorithms.

• A* search algorithm is optimal and complete.

• This algorithm can solve very complex problems.

Disadvantages:

• It does not always produce the shortest path as it mostly based on
heuristics and approximation.

• A* search algorithm has some complexity issues.

• The main drawback of A* is memory requirement as it keeps all

generated nodes in the memory, so it is not practical for various

large-scale problems.

Example: In this example, we will traverse the given graph using the
A* algorithm. The heuristic value of all states is given in the below table

Algorithms in Informed Search and Hill Climbing in AI 229

so we will calculate the f(n) of each state using the formula f(n)= g(n) +

h(n), where g(n) is the cost to reach any node from start state.

Here we will use OPEN and CLOSED list.

Solution:

230 Artificial Intelligence : Making a System Intelligent

Initialization: {(S, 5)}

Iteration1: {(S—> A, 4), (S—>G, 10)}

Iteration2: {(S—> A—>C, 4), (S—> A—>B, 7), (S—>G, 10)}

Iteration3: {(S—> A—>C—>G, 6), (S—> A—>C—>D, 11), (S—> A—>B,

7), (S—>G, 10)}

Iteration 4 will give the final result, as S—>A—>C—>G it provides the

optimal path with cost 6.

Points to remember:

• A* algorithm returns the path which occurred first, and it does not

search for all remaining paths.

• The efficiency of A* algorithm depends on the quality of heuristic.

• A* algorithm expands all nodes which satisfy the condition f(n)

<=‛‛ li=‛‛>

Complete: A* algorithm is complete as long as:

• Branching factor is finite.

• Cost at every action is fixed.

Optimal: A* search algorithm is optimal if it follows below two

conditions:

• Admissible: the first condition requires for optimality is that h(n)
should be an admissible heuristic for A* tree search. An admissible
heuristic is optimistic in nature.

• Consistency: Second required condition is consistency for only A*
graph-search.

If the heuristic function is admissible, then A* tree search will always

find the least cost path.

Time Complexity: The time complexity of A* search algorithm depends
on heuristic function, and the number of nodes expanded is exponential
to the depth of solution d. So the time complexity is O(b^d), where b is
the branching factor.

Space Complexity: The space complexity of A* search algorithm is

O(b^d)

HILL CLIMBING ALGORITHM

Hill Climbing is a heuristic search used for mathematical optimisation problems

in the field of Artificial Intelligence.

Algorithms in Informed Search and Hill Climbing in AI 231

So, given a large set of inputs and a good heuristic function, the
algorithm tries to find the best possible solution to the problem in the most
reasonable time period. This solution may not be the absolute best(global
optimal maximum) but it is sufficiently good considering the time allotted.

The definition above implies that hill-climbing solves the problems
where we need to maximise or minimise a given real function by selecting
values from the given inputs.

A great example of this is the Travelling Salesman Problem where we

need to minimise the distance travelled by the salesman.

Features of Hill Climbing

It carries out a Heuristic search.

A heuristic function is one that ranks all the potential alternatives in
a search algorithm based on the information available. It helps the algorithm
to select the best route to its solution. This basically means that this search
algorithm may not find the optimal solution to the problem but it will give
the best possible solution in a reasonable amount of time.

It is a variant of the generate-and-test algorithm.

The algorithm is as follows :

Step1: Generate possible solutions.

Step2: Evaluate to see if this is the expected solution.

Step3: If the solution has been found quit else go back to step 1.

Hill climbing takes the feedback from the test procedure and the
generator uses it in deciding the next move in the search space. Hence,
we call it as a variant of the generate-and-test algorithm.

It uses the Greedy approach.

At any point in state space, the search moves in that direction only
which optimises the cost of function with the hope of finding the most
optimum solution at the end.

State Space diagram for Hill Climbing

The State-space diagram is a graphical representation of the set of

states(input) our search algorithm can reach vs the value of our objective

function(function we intend to maximise/minimise). Here;

1. The X-axis denotes the state space ie states or configuration our
algorithm may reach.

232 Artificial Intelligence : Making a System Intelligent

2. The Y-axis denotes the values of objective function corresponding

to a particular state.

The best solution will be that state space where objective function has maximum

value or global maxima.

Following are the different regions in the State Space Diagram;

• Local maxima: It is a state which is better than its neighbouring
state however there exists a state which is better than it (global
maximum). This state is better because here the value of the objective
function is higher than its neighbours.

• Global maxima: It is the best possible state in the state space diagram.

This because at this state, objective function has the highest value.

• Plateau/flat local maxima: It is a flat region of state space where

neighbouring states have the same value.

• Ridge: It is a region which is higher than its neighbour’s but itself
has a slope. It is a special kind of local maximum.

• Current state: The region of state space diagram where we are

currently present during the search.

Working of Hill Climbing Algorithm

Hill Climbing is the simplest implementation of a Genetic Algorithm.
Instead of focusing on the ease of implementation, it completely rids itself
of concepts like population and crossover. It has faster iterations compared
to more traditional genetic algorithms, but in return, it is less thorough
than the traditional ones.

Types of Hill Climbing

Simple Hill Climbing

Simple hill climbing is the simplest way to implement a hill-climbing
algorithm. It only evaluates the neighbour node state at a time and selects
the first one which optimizes current cost and set it as a current state. It
only checks it’s one successor state, and if it finds better than the current
state, then move else be in the same state. This algorithm has the following
features:

• Less time consuming

• Less optimal solution

• The solution is not guaranteed

Algorithms in Informed Search and Hill Climbing in AI 233

Algorithm for Simple Hill Climbing

• Step 1: Evaluate the initial state, if it is goal state then return success
and Stop.

• Step 2: Loop Until a solution is found or there is no new operator
left to apply.

• Step 3: Select and apply an operator to the current state.

• Step 4: Check new state:

i. If it is goal state, then return success and quit.

ii. else if it is better than the current state then assign new state
as a current state.

iii. else if not better than the current state, then return to step 2.

• Step 5: Exit.

Steepest-Ascent hill climbing

The steepest-Ascent algorithm is a variation of the simple hill-climbing
algorithm. This algorithm examines all the neighbouring nodes of the
current state and selects one neighbour node which is closest to the goal
state. This algorithm consumes more time as it searches for multiple
neighbours.

Algorithm for Steepest-Ascent hill climbing

• Step 1: Evaluate the initial state, if it is goal state then return success

and stop, else make the current state as your initial state.

• Step 2: Loop until a solution is found or the current state does not
change.

i. Let S be a state such that any successor of the current state will
be better than it.

ii. For each operator that applies to the current state;

— Apply the new operator and generate a new state.

— Evaluate the new state.

— If it is goal state, then return it and quit, else compare it to
the S.

— If it is better than S, then set new state as S.

— If the S is better than the current state, then set the current
state to S.

• Step 5: Exit.

234 Artificial Intelligence : Making a System Intelligent

Stochastic hill climbing

Stochastic hill climbing does not examine for all its neighbours before

moving. Rather, this search algorithm selects one neighbour node at random

and evaluate it as a current state or examine another state.

Problems in different regions in Hill climbing

Hill climbing cannot reach the best possible state if it enters any of
the following regions :

Local maximum: At a local maximum all neighbouring states have
values which are worse than the current state. Since hill-climbing uses a
greedy approach, it will not move to the worse state and terminate itself.
The process will end even though a better solution may exist.

To overcome the local maximum problem: Utilise the backtracking
technique. Maintain a list of visited states. If the search reaches an undesirable
state, it can backtrack to the previous configuration and explore a new
path.

Plateau: On the plateau, all neighbours have the same value. Hence,

it is not possible to select the best direction.

To overcome plateaus: Make a big jump. Randomly select a state far
away from the current state. Chances are that we will land at a non-plateau
region

Ridge: Any point on a ridge can look like a peak because the movement
in all possible directions is downward. Hence, the algorithm stops when
it reaches such a state.

To overcome Ridge: You could use two or more rules before testing.

It implies moving in several directions at once.

Simulated Annealing

A hill-climbing algorithm which never makes a move towards a lower
value guaranteed to be incomplete because it can get stuck on a local
maximum. And if algorithm applies a random walk, by moving a successor,
then it may complete but not efficient.

Mechanically, the term annealing is a process of hardening a metal
or glass to a high temperature then cooling gradually, so this allows the
metal to reach a low-energy crystalline state. The same process is used in
simulated annealing in which the algorithm picks a random move, instead
of picking the best move. If the random move improves the state, then it

Algorithms in Informed Search and Hill Climbing in AI 235

follows the same path. Otherwise, the algorithm follows the path which
has a probability of less than 1 or it moves downhill and chooses another
path.

INFORMED SEARCH

Informed Search refers to search algorithms which help in navigating
large databases with certain available information about the end goal in
search and most widely used in large databases where uninformed search
algorithms can’t accurately curate precise results.

For example, when searching on google maps you give the search
algorithm information like a place you plan to visit from your current
location for it to accurately navigate the distance, the time taken and real-
time traffic updates on that particular route. This is all driven by complex
Informed search algorithms powering google maps search functionality.

Types of Informed Search Algorithms

Before getting started with different types of Informed search
Algorithms, it’s important to understand some basic concepts like Search
Space which refers to space or the database in which the search is to be
performed, the Initial State or Start State from where the search begins and
the goal state which is the result of the search like our destination in the
earlier example of google maps and goal test to check whether the current
state is the destination or goal state. Path cost is a numerical term assigned
to measure the numeric cost of the path taken to achieve the goal. Heuristic
function, which is a function used to measure how close our current state
is to the goal state and uses heuristic properties to find out the best possible
path with respect to path cost to achieve the goal state.

In informed search algorithms as discussed, we have information on
the goal state which narrows down our results precisely. There may be
many possible ways to get to the goal state, but we need to get the best
possible outcome or path for our search; this is where informed search
shines.

Pure Heuristic search

A pure heuristic search algorithm is a simple search performed on the

basis of heuristic value denoted y h(n) to a node.

In a heuristic search, there are two lost created, open for new but

unexpanded nodes and closed for expanded nodes, where for every iteration

236 Artificial Intelligence : Making a System Intelligent

the node with smallest heuristic value is expanded, and all its ‘child’ nodes
are expanded and added to close it. A Heuristic function is then applied
to that closed list, and the node with the shortest path is saved, and rest
are dispersed.

Best First or ‘Greedy’ Search

In order to understand the Greedy search, we need to briefly
understand the concept of DFS and FS. They’re both vertex-based techniques
to find the shortest path. While DFS uses a stack data structure, BFS uses
a queue data structure to find out the shortest route.

Greedy search at its core uses the best path from the current state
using a combination of both DFS and FS techniques to find the shortest
path. The node that is closest to the goal is expanded in that current state
and the closest cost to that point.

It’s called the greedy search because it may not find the best solution
at a given point of time, but it surely does give you an optimal one within
a reasonable amount of time. It can be best explained by the example of
the Travelling Salesman problem.

A salesman is given a list of places to visit in a city and has to find
his optimum route to travel in order to be productive to reduce his travelling
time as much as possible. Here he’ll be given a choice of choosing between
2 or more places from his current position to go to, and he’ll choose the
one with least distance thereby reducing his travel time albeit not being
his best destination but that is a roader optimal solution.

A* Tree Search

Simply put, A* search combines elements and strengths from a greedy
search and a Uniform cost search. The heuristic of A*search is the summation
of Heuristic cost in greedy search and that in uniform cost search denoted
here,

F(x)= h(x)+g(x)

Where,

• h(x): Forward cost referring cost of a node from the current state

to the goal state.

• g(x): Backward cost which is the cost of a node from the root state
or initial state.

Here, as represented, the idea is to select a node with the shortest f(x).

Algorithms in Informed Search and Hill Climbing in AI 237

One of the biggest advantages of A* search algorithm is that it’s a
complete search algorithm as when compared to a simple heuristic approach
which only gives the shortest paths, it also takes into account the optimality
of the operation overall and therefore is the most widely used search
algorithm and can solve complex functions with complex search space.
However, as discussed, it keeps into its memory all of the expansion and
generation of nodes, is resource constraint and can’t be used for very large
scale operations.

A*Graph Search

In Tree search, the branches or nodes are expanded again to newer
iterations and thus wasting time in the process whereas in graph search
same nodes which are expanded before aren’t expanded. Here the heuristic
is represented by consistency, where the graph search is optimal when the
forward cost as represented in A*tree search is equal to or less than
backward cost between the two nodes.

One of the advantages of graph search over A* search is that it doesn’t
store all the nodes and therefore isn’t resource-constrained and can be
used for very large-scale operations.

INTRODUCTION TO HILL CLIMBING IN ARTIFICIAL

INTELLIGENCE

Hill Climbing is a form of heuristic search algorithm which is used
in solving optimization related problems in Artificial Intelligence domain.
The algorithm starts with a non-optimal state and iteratively improves its
state until some predefined condition is met. The condition to be met is
based on the heuristic function. The aim of the algorithm is to reach an
optimal state which is better than its current state. The starting point which
is the non-optimal state is referred to as the base of the hill and it tries
to constantly iterate (climb) untill it reaches the peak value, that is why
it is called Hill Climbing Algorithm.

Hill Climbing Algorithm is a memory-efficient way of solving large
computational problems. It takes into account the current state and
immediate neighbouring state. The Hill Climbing Problem is particularly
useful when we want to maximize or minimize any particular function
based on the input which it is taking. The most commonly used Hill
Climbing Algorithm is ‚Travelling Salesman‛ Problem‛ where we have
to minimize the distance travelled by the salesman. Hill Climbing Algorithm

238 Artificial Intelligence : Making a System Intelligent

may not find the global optimal (best possible) solution but it is good for

finding local minima/maxima efficiently.

Features of Hill Climbing in Artificial Intelligence

Following are few of the key features of Hill Climbing Algorithm

• Greedy Approach: The algorithm moves in the direction of

optimizing the cost i.e. finding Local Maxima/Minima

• No Backtracking: It cannot remember the previous state of the
system so backtracking to the previous state is not possible

• Feedback Mechanism: The feedback from the previous computation
helps in deciding the next course of action i.e. whether to move up
or down the slope

State Space Diagram – Hill Climbing in Artificial Intelligence

• Local Maxima/Minima: Local Minima is a state which is better than
its neighbouring state, however, it is not the best possible state as
there exists a state where objective function value is higher

• Global Maxima/Minima: It is the best possible state in the state

diagram. Here the value of the objective function is highest

• Current State: Current State is the state where the agent is present

currently

• Flat Local Maximum: This region is depicted by a straight line

where all neighbouring states have the same value so every node

is local maximum over the region

Problems in Hill Climbing Algorithm

Local Maximum

The algorithm terminates when the current node is local maximum
as it is better than its neighbours. However, there exists a global maximum
where objective function value is higher

Solution: Back Propagation can mitigate the problem of Local maximum

as it starts exploring alternate paths when it encounters Local Maximum

Ridge

Ridge occurs when there are multiple peaks and all have the same
value or in other words, there are multiple local maxima which are same
as global maxima

Algorithms in Informed Search and Hill Climbing in AI 239

Plateau

Plateau is the region where all the neighbouring nodes have the same

value of objective function so the algorithm finds it hard to select an

appropriate direction.

Types of Hill Climbing Algorithm in Artificial Intelligence

Simple Hill Climbing

It is the simplest form of the Hill Climbing Algorithm. It only takes
into account the neighboring node for its operation. If the neighboring
node is better than the current node then it sets the neighbor node as the
current node. The algorithm checks only one neighbor at a time. Following
are a few of the key feature of the Simple Hill Climbing Algorithm

Algorithm

1. Examine the current state, Return success if it is a goal state

2. Continue the Loop until a new solution is found or no operators

are left to apply

3. Apply the operator to the node in the current state

4. Check for the new state

• If Current State = Goal State, Return success and exit

• Else if New state is better than current state then Goto New state

• Else return to step 2

5. Exit

Steepest-Ascent Hill Climbing

Steepest-Ascent hill climbing is an advanced form of simple Hill
Climbing Algorithm. It runs through all the nearest neighbor nodes and
selects the node which is nearest to the goal state. The algorithm requires
more computation power than Simple Hill Climbing Algorithm as it
searches through multiple neighbors at once.

Algorithm

1. Examine the current state, Return success if it is a goal state

2. Continue the Loop until a new solution is found or no operators

are left to apply

Let ‘Temp’ be a state such that any successor of the current state will
have a higher value for the objective function. For all operators that can
be applied to the current state

240 Artificial Intelligence : Making a System Intelligent

• Apply the operator to create a new state

• Examine new state

• If Current State = Goal State, Return success and exit

• Else if New state is better than Temp then set this state as Temp

• If Temp is better than Current State set Current state to Target

Stochastic Hill Climbing

Stochastic Hill Climbing doesn’t look at all its neighboring nodes to
check if it is better than the current node instead, it randomly selects one
neighboring node, and based on the pre-defined criteria it decides whether
to go to the neighboring node or select an alternate node.

Advantage of Hill Climbing Algorithm in Artificial Intelligence

Advantage of Hill Climbing Algorithm in Artificial Intelligence is

given below:

• Hill Climbing is very useful in routing-related problems like
Travelling Salesmen Problem, Job Scheduling, Chip Designing, and
Portfolio Management

• It is good in solving the optimization problem while using only
limited computation power

• It is more efficient than other search algorithms

Hill Climbing Algorithm is a very widely used algorithm for
Optimization related problems as it gives decent solutions to
computationally challenging problems. It has certain drawbacks associated
with it like its Local Minima, Ridge, and Plateau problem which can be
solved by using some advanced algorithm.

Understanding Hill Climbing Algorithm in Artificial Intelligence

A hill-climbing algorithm is an Artificial Intelligence (AI) algorithm
that increases in value continuously until it achieves a peak solution. This
algorithm is used to optimize mathematical problems and in other real-
life applications like marketing and job scheduling.

Introduction to hill climbing algorithm

A hill-climbing algorithm is a local search algorithm that moves
continuously upward (increasing) until the best solution is attained. This
algorithm comes to an end when the peak is reached.

Algorithms in Informed Search and Hill Climbing in AI 241

This algorithm has a node that comprises two parts: state and value.
It begins with a non-optimal state (the hill’s base) and upgrades this state
until a certain precondition is met. The heuristic function is used as the
basis for this precondition. The process of continuous improvement of the
current state of iteration can be termed as climbing. This explains why the
algorithm is termed as a hill-climbing algorithm.

A hill-climbing algorithm’s objective is to attain an optimal state that
is an upgrade of the existing state. When the current state is improved,
the algorithm will perform further incremental changes to the improved
state. This process will continue until a peak solution is achieved. The peak
state cannot undergo further improvements.

Features of a hill climbing algorithm

A hill-climbing algorithm has four main features:

1. It employs a greedy approach: This means that it moves in a direction

in which the cost function is optimized. The greedy approach enables

the algorithm to establish local maxima or minima.

2. No Backtracking: A hill-climbing algorithm only works on the current

state and succeeding states (future). It does not look at the previous

states.

3. Feedback mechanism: The algorithm has a feedback mechanism
that helps it decide on the direction of movement (whether up or
down the hill). The feedback mechanism is enhanced through the
generate-and-test technique.

4. Incremental change: The algorithm improves the current solution

by incremental changes.

State-space diagram analysis

A state-space diagram provides a graphical representation of states
and the optimization function. If the objective function is the y-axis, we
aim to establish the local maximum and global maximum.

If the cost function represents this axis, we aim to establish the local
minimum and global minimum. More information about local minimum,
local maximum, global minimum, and global maximum can be found here.

The following diagram shows a simple state-space diagram. The
objective function has been shown on the y-axis, while the state-space
represents the x-axis.

242 Artificial Intelligence : Making a System Intelligent

A state-space diagram consists of various regions that can be explained

as follows;

• Local maximum: A local maximum is a solution that surpasses other

neighboring solutions or states but is not the best possible solution.

• Global maximum: This is the best possible solution achieved by the

algorithm.

• Current state: This is the existing or present state.

• Flat local maximum: This is a flat region where the neighboring

solutions attain the same value.

• Shoulder: This is a plateau whose edge is stretching upwards.

Problems with hill climbing

There are three regions in which a hill-climbing algorithm cannot
attain a global maximum or the optimal solution: local maximum, ridge,
and plateau.

Local maximum

At this point, the neighboring states have lower values than the current
state. The greedy approach feature will not move the algorithm to a worse
off state. This will lead to the hill-climbing process’s termination, even
though this is not the best possible solution.

This problem can be solved using momentum. This technique adds
a certain proportion (m) of the initial weight to the current one. m is a value
between 0 and 1. Momentum enables the hill-climbing algorithm to take
huge steps that will make it move past the local maximum.

Plateau

In this region, the values attained by the neighboring states are the

same. This makes it difficult for the algorithm to choose the best direction.

This challenge can be overcome by taking a huge jump that will lead
you to a non-plateau space.

Ridge

The hill-climbing algorithm may terminate itself when it reaches a

ridge. This is because the peak of the ridge is followed by downward

movement rather than upward movement.

This impediment can be solved by going in different directions at

once.

Algorithms in Informed Search and Hill Climbing in AI 243

Types of hill climbing algorithms

The following are the types of a hill-climbing algorithm:

Simple hill climbing

This is a simple form of hill climbing that evaluates the neighboring
solutions. If the next neighbor state has a higher value than the current
state, the algorithm will move. The neighboring state will then be set as
the current one.

This algorithm consumes less time and requires little computational

power. However, the solutions produced by the algorithm are sub-optimal.

In some cases, an optimal solution may not be guaranteed.

Steepest – Ascent hill climbing

This algorithm is more advanced than the simple hill-climbing
algorithm. It chooses the next node by assessing the neighboring nodes.
The algorithm moves to the node that is closest to the optimal or goal state.

Algorithm

• Conduct an assessment of the current state. Stop the process and

indicate success if it is a goal state.

• Perform looping on the current state if the assessment in step 1 did

not establish a goal state.

• Continue looping to attain a new solution.

• Establish or set a state (X) such that current state successors have

higher values than it.

• Run the new operator and produce a new solution.

• Assess this solution to establish whether it is a goal state. If this is

the case, exit the program. Otherwise, compare it with the state (X).

• If the new state has a higher value than the state (X), set it as X.
The current state should be set to Target if the state (X) has a higher
value than the current state.

Stochastic hill climbing

In this algorithm, the neighboring nodes are selected randomly. The
selected node is assessed to establish the level of improvement. The
algorithm will move to this neighboring node if it has a higher value than
the current state.

244 Artificial Intelligence : Making a System Intelligent

Applications of hill climbing algorithm

The hill-climbing algorithm can be applied in the following areas:

Marketing

A hill-climbing algorithm can help a marketing manager to develop
the best marketing plans. This algorithm is widely used in solving Traveling-
Salesman problems. It can help by optimizing the distance covered and
improving the travel time of sales team members. The algorithm helps
establish the local minima efficiently.

Robotics

Hill climbing is useful in the effective operation of robotics. It enhances

the coordination of different systems and components in robots.

Job Scheduling

The hill climbing algorithm has also been applied in job scheduling.
This is a process in which system resources are allocated to different tasks
within a computer system. Job scheduling is achieved through the migration
of jobs from one node to a neighboring node. A hill-climbing technique
helps establish the right migration route.

System Virtual Machines in Artificial Intelligence 245

System Virtual Machines in
Artificial Intelligence

VIRTUAL MACHINE

In computing, a virtual machine (VM) is the virtualization/emulation
of a computer system. Virtual machines are based on computer architectures
and provide functionality of a physical computer. Their implementations
may involve specialized hardware, software, or a combination.

Virtual machines differ and are organized by their function, shown

here:

• System virtual machines (also termed full virtualization VMs)
provide a substitute for a real machine. They provide functionality
needed to execute entire operating systems. A hypervisor uses
native execution to share and manage hardware, allowing for
multiple environments which are isolated from one another, yet
exist on the same physical machine. Modern hypervisors use
hardware-assisted virtualization, virtualization-specific hardware,
primarily from the host CPUs.

• Process virtual machines are designed to execute computer programs
in a platform-independent environment.

Some virtual machine emulators, such as QEMU and video game
console emulators, are designed to also emulate (or ‚virtually imitate‛)
different system architectures thus allowing execution of software
applications and operating systems written for another CPU or architecture.
Operating-system-level virtualization allows the resources of a computer
to be partitioned via the kernel. The terms are not universally
interchangeable.

246 Artificial Intelligence : Making a System Intelligent

System virtual machines

A ‚virtual machine‛ was originally defined by Popek and Goldberg
as ‚an efficient, isolated duplicate of a real computer machine.‛ Current
use includes virtual machines that have no direct correspondence to any
real hardware. The physical, ‚real-world‛ hardware running the VM is
generally referred to as the ‘host’, and the virtual machine emulated on
that machine is generally referred to as the ‘guest’. A host can emulate
several guests, each of which can emulate different operating systems and
hardware platforms.

The desire to run multiple operating systems was the initial motive
for virtual machines, so as to allow time-sharing among several single-
tasking operating systems. In some respects, a system virtual machine can
be considered a generalization of the concept of virtual memory that
historically preceded it. IBM’s CP/CMS, the first systems to allow full
virtualization, implemented time sharing by providing each user with a
single-user operating system, the Conversational Monitor System (CMS).
Unlike virtual memory, a system virtual machine entitled the user to write
privileged instructions in their code. This approach had certain advantages,
such as adding input/output devices not allowed by the standard system.

As technology evolves virtual memory for purposes of virtualization,
new systems of memory overcommitment may be applied to manage
memory sharing among multiple virtual machines on one computer
operating system. It may be possible to share memory pages that have
identical contents among multiple virtual machines that run on the same
physical machine, what may result in mapping them to the same physical
page by a technique termed kernel same-page merging (KSM). This is
especially useful for read-only pages, such as those holding code segments,
which is the case for multiple virtual machines running the same or similar
software, software libraries, web servers, middleware components, etc.
The guest operating systems do not need to be compliant with the host
hardware, thus making it possible to run different operating systems on
the same computer (e.g., Windows, Linux, or prior versions of an operating
system) to support future software.

The use of virtual machines to support separate guest operating systems
is popular in regard to embedded systems. A typical use would be to run
a real-time operating system simultaneously with a preferred complex
operating system, such as Linux or Windows. Another use would be for
novel and unproven software still in the developmental stage, so it runs

System Virtual Machines in Artificial Intelligence 247

inside a sandbox. Virtual machines have other advantages for operating
system development and may include improved debugging access and
faster reboots.

Multiple VMs running their own guest operating system are frequently

engaged for server consolidation.

Process virtual machines

‚Application virtual machine‛ redirects here. Not to be confused with

application virtualization.

A process VM, sometimes called an application virtual machine, or
Managed Runtime Environment (MRE), runs as a normal application inside
a host OS and supports a single process. It is created when that process
is started and destroyed when it exits. Its purpose is to provide a platform-
independent programming environment that abstracts away details of the
underlying hardware or operating system and allows a program to execute
in the same way on any platform.

A process VM provides a high-level abstraction – that of a high-level
programming language (compared to the low-level ISA abstraction of the
system VM). Process VMs are implemented using an interpreter;
performance comparable to compiled programming languages can be
achieved by the use of just-in-time compilation.

This type of VM has become popular with the Java programming
language, which is implemented using the Java virtual machine. Other
examples include the Parrot virtual machine and the .NET Framework,
which runs on a VM called the Common Language Runtime. All of them
can serve as an abstraction layer for any computer language.

A special case of process VMs are systems that abstract over the
communication mechanisms of a (potentially heterogeneous) computer
cluster. Such a VM does not consist of a single process, but one process
per physical machine in the cluster. They are designed to ease the task of
programming concurrent applications by letting the programmer focus on
algorithms rather than the communication mechanisms provided by the
interconnect and the OS. They do not hide the fact that communication
takes place, and as such do not attempt to present the cluster as a single
machine.

Unlike other process VMs, these systems do not provide a specific

programming language, but are embedded in an existing language; typically

such a system provides bindings for several languages (e.g., C and Fortran).

248 Artificial Intelligence : Making a System Intelligent

Examples are Parallel Virtual Machine (PVM) and Message Passing Interface
(MPI). They are not strictly virtual machines because the applications
running on top still have access to all OS services and are therefore not
confined to the system model.

History

Both system virtual machines and process virtual machines date to

the 1960s and continue to be areas of active development.

System virtual machines grew out of time-sharing, as notably
implemented in the Compatible Time-Sharing System (CTSS). Time-sharing
allowed multiple users to use a computer concurrently: each program
appeared to have full access to the machine, but only one program was
executed at the time, with the system switching between programs in time
slices, saving and restoring state each time. This evolved into virtual
machines, notably via IBM’s research systems: the M44/44X, which used
partial virtualization, and the CP-40 and SIMMON, which used full
virtualization, and were early examples of hypervisors. The first widely
available virtual machine architecture was the CP-67/CMS. An important
distinction was between using multiple virtual machines on one host
system for time-sharing, as in M44/44X and CP-40, and using one virtual
machine on a host system for prototyping, as in SIMMON. Emulators, with
hardware emulation of earlier systems for compatibility, date back to the
IBM System/360 in 1963, while the software emulation (then-called
‚simulation‛) predates it.

Process virtual machines arose originally as abstract platforms for an
intermediate language used as the intermediate representation of a program
by a compiler; early examples date to around 1966. An early 1966 example
was the O-code machine, a virtual machine that executes O-code (object
code) emitted by the front end of the BCPL compiler. This abstraction
allowed the compiler to be easily ported to a new architecture by
implementing a new back end that took the existing O-code and compiled
it to machine code for the underlying physical machine. The Euler language
used a similar design, with the intermediate language named P (portable).

This was popularized around 1970 by Pascal, notably in the Pascal-
P system (1973) and Pascal-S compiler (1975), in which it was termed p-
code and the resulting machine as a p-code machine. This has been
influential, and virtual machines in this sense have been often generally
called p-code machines. In addition to being an intermediate language,
Pascal p-code was also executed directly by an interpreter implementing

System Virtual Machines in Artificial Intelligence 249

the virtual machine, notably in UCSD Pascal (1978); this influenced later
interpreters, notably the Java virtual machine (JVM). Another early example
was SNOBOL4 (1967), which was written in the SNOBOL Implementation
Language (SIL), an assembly language for a virtual machine, which was
then targeted to physical machines by transpiling to their native assembler
via a macro assembler. Macros have since fallen out of favor, however, so
this approach has been less influential. Process virtual machines were a
popular approach to implementing early microcomputer software,
including Tiny BASIC and adventure games, from one-off implementations
such as Pyramid 2000 to a general-purpose engine like Infocom’s z-machine,
which Graham Nelson argues is ‚possibly the most portable virtual machine
ever created‛.

Significant advances occurred in the implementation of Smalltalk-80,
particularly the Deutsch/Schiffmann implementation which pushed just-
in-time (JIT) compilation forward as an implementation approach that
uses process virtual machine.

Later notable Smalltalk VMs were VisualWorks, the Squeak Virtual
Machine, and Strongtalk. A related language that produced a lot of virtual
machine innovation was the Self programming language, which pioneered
adaptive optimization and generational garbage collection. These techniques
proved commercially successful in 1999 in the HotSpot Java virtual machine.
Other innovations include having a register-based virtual machine, to
better match the underlying hardware, rather than a stack-based virtual
machine, which is a closer match for the programming language; in 1995,
this was pioneered by the Dis virtual machine for the Limbo language.
OpenJ9 is an alternative for HotSpot JVM in OpenJDK and is an open
source eclipse project claiming better startup and less resource consumption
compared to HotSpot.

Full virtualization

In full virtualization, the virtual machine simulates enough hardware
to allow an unmodified ‚guest‛ OS (one designed for the same instruction
set) to be run in isolation. This approach was pioneered in 1966 with the
IBM CP-40 and CP-67, predecessors of the VM family.

Examples outside the mainframe field include Parallels Workstation,
Parallels Desktop for Mac, VirtualBox, Virtual Iron, Oracle VM, Virtual PC,
Virtual Server, Hyper-V, VMware Workstation, VMware Server
(discontinued, formerly called GSX Server), VMware ESXi, QEMU, Adeos,
Mac-on-Linux, Win4BSD, Win4Lin Pro, and Egenera vBlade technology.

250 Artificial Intelligence : Making a System Intelligent

Operating-system-level virtualization

In operating-system-level virtualization, a physical server is virtualized
at the operating system level, enabling multiple isolated and secure
virtualized servers to run on a single physical server. The ‚guest‛ operating
system environments share the same running instance of the operating
system as the host system. Thus, the same operating system kernel is also
used to implement the ‚guest‛ environments, and applications running
in a given ‚guest‛ environment view it as a stand-alone system. The
pioneer implementation was FreeBSD jails; other examples include Docker,
Solaris Containers, OpenVZ, Linux-VServer, LXC, AIX Workload Partitions,
Parallels Virtuozzo Containers, and iCore Virtual Accounts.

MACHINE LEARNING

Machine learning, a branch of artificial intelligence, is a scientific
discipline concerned with the design and development of algorithms that
allow computers to evolve behaviours based on empirical data, such as
from sensor data or databases.

A learner can take advantage of examples (data) to capture
characteristics of interest of their unknown underlying probability
distribution. Data can be seen as examples that illustrate relations
between observed variables.

A major focus of machine learning research is to automatically
learn to recognize complex patterns and make intelligent decisions
based on data; the difficulty lies in the fact that the set of all possible
behaviours given all possible inputs is too large to be covered by the
set of observed examples (training data).

Hence the learner must generalize from the given examples, so as to
be able to produce a useful output in new cases. Machine learning, like
all subjects in artificial intelligence, requires cross-disciplinary proficiency
in several areas, such as probability theory, statistics, pattern recognition,
cognitive science, data mining, adaptive control, computational
neuroscience and theoretical computer science.

Definition

A computer programme is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E.

System Virtual Machines in Artificial Intelligence 251

Generalization

The core objective of a learner is to generalize from its experience. The
training examples from its experience come from some generally unknown
probability distribution and the learner has to extract from them something
more general, something about that distribution, that allows it to produce
useful answers in new cases.

Human Interaction

Some machine learning systems attempt to eliminate the need for
human intuition in data analysis, while others adopt a collaborative
approach between human and machine. Human intuition cannot, however,
be entirely eliminated, since the system’s designer must specify how the
data is to be represented and what mechanisms will be used to search for
a characterization of the data.

Algorithm Types

Machine learning algorithms are organized into a taxonomy, based on
the desired outcome of the algorithm.

• Supervised learning generates a function that maps inputs to desired
outputs (also called labels, because they are often provided by
human experts labeling the training examples). For example, in a
classification problem, the learner approximates a function mapping
a vector into classes by looking at input-output examples of the
function.

• Unsupervised learning models a set of inputs, like clustering.

• Semi-supervised learning combines both labeled and unlabeled

examples to generate an appropriate function or classifier.

• Reinforcement learning learns how to act given an observation of
the world. Every action has some impact in the environment, and
the environment provides feedback in the form of rewards that
guides the learning algorithm.

• Transduction tries to predict new outputs based on training inputs,

training outputs, and test inputs.

• Learning to learn learns its own inductive bias based on previous

experience.

Theory

The computational analysis of machine learning algorithms and their

252 Artificial Intelligence : Making a System Intelligent

performance is a branch of theoretical computer science known as
computational learning theory. Because training sets are finite and the
future is uncertain, learning theory usually does not yield absolute
guarantees of the performance of algorithms. Instead, probabilistic bounds
on the performance are quite common.

In addition to performance bounds, computational learning theorists
study the time complexity and feasibility of learning. In computational
learning theory, a computation is considered feasible if it can be done in
polynomial time. There are two kinds of time complexity results. Positive
results show that a certain class of functions can be learned in polynomial
time. Negative results show that certain classes cannot be learned in
polynomial time. There are many similarities between machine learning
theory and statistics, although they use different terms.

Approaches

Decision Tree Learning

Decision tree learning uses a decision tree as a predictive model which

maps observations about an item to conclusions about the item’s target
value.

Association Rule Learning

Association rule learning is a method for discovering interesting

relations between variables in large databases.

Artificial Neural Networks

An artificial neural network (ANN) learning algorithm, usually called
‚neural network‛ (NN), is a learning algorithm that is inspired by the
structure and/or functional aspects of biological neural networks.
Computations are structured in terms of an interconnected group of artificial
neurons, processing information using a connectionist approach to
computation. Modern neural networks are non-linear statistical data
modeling tools. They are usually used to model complex relationships
between inputs and outputs, to find patterns in data, or to capture the
statistical structure in an unknown joint probability distribution between
observed variables.

Genetic Programming

Genetic programming (GP) is an evolutionary algorithm-based
methodology inspired by biological evolution to find computer programmes

System Virtual Machines in Artificial Intelligence 253

that perform a user-defined task. It is a specialization of genetic algorithms
(GA) where each individual is a computer programme. It is a machine
learning technique used to optimize a population of computer programmes
according to a fitness landscape determined by a program’s ability to
perform a given computational task.

Inductive Logic Programming

Inductive logic programming (ILP) is an approach to rule learning
using logic programming as a uniform representation for examples,
background knowledge, and hypotheses. Given an encoding of the known
background knowledge and a set of examples represented as a logical
database of facts, an ILP system will derive a hypothesized logic programme
which entails all the positive and none of the negative examples.

Support Vector Machines

Support vector machines (SVMs) are a set of related supervised learning
methods used for classification and regression. Given a set of training
examples, each marked as belonging to one of two categories, an SVM
training algorithm builds a model that predicts whether a new example
falls into one category or the other.

Clustering

Cluster analysis or clustering is the assignment of a set of observations
into subsets (called clusters) so that observations in the same cluster are
similar in some sense. Clustering is a method of unsupervised learning,
and a common technique for statistical data analysis.

Bayesian Networks

A Bayesian network, belief network or directed acyclic graphical model
is a probabilistic graphical model that represents a set of random variables
and their conditional independencies via a directed acyclic graph (DAG).
For example, a Bayesian network could represent the probabilistic
relationships between diseases and symptoms. Given symptoms, the
network can be used to compute the probabilities of the presence of
various diseases. Efficient algorithms exist that perform inference and
learning.

Reinforcement Learning

Reinforcement learning is concerned with how an agent ought to take

254 Artificial Intelligence : Making a System Intelligent

actions in an environment so as to maximize some notion of long-term
reward. Reinforcement learning algorithms attempt to find a policy that
maps states of the world to the actions the agent ought to take in those
states. Reinforcement learning differs from the supervised learning problem
in that correct input/output pairs are never presented, nor sub-optimal
actions explicitly corrected.

Representation Learning

Several learning algorithms, mostly unsupervised learning algorithms,
aim at discovering better representations of the inputs provided during
training. Classical examples include principal components analysis and
clustering. Representation learning algorithms often attempt to preserve
the information in their input but transform it it in a way that makes it
useful, often as a pre-processing step before performing classification or
predictions, allowing to reconstruct the inputs coming from the unknown
data generating distribution, while not being necessarily faithful for input
configurations that are unplausible under that distribution. Manifold
learning algorithms attempt to do so under the constraint that the learned
representation is low-dimensional. Sparse coding algorithms attempt to
do so under the constraint that the learned representation is sparse (has
many zeros). Deep learning algorithms discover multiple levels of
representation, or a hierarchy of features, with higher-level, more abstract
features defined in terms of (or generating) lower-level features. It has
been argued that an ideal representation is one that disentangles the
underlying factors of variation that explain the observed data.

Applications

Applications for machine learning include machine perception,
computer vision, natural language processing, syntactic pattern recognition,
search engines, medical diagnosis, bioinformatics, brain-machine interfaces
and cheminformatics, detecting credit card fraud, stock market analysis,
classifying DNA sequences, speech and handwriting recognition, object
recognition in computer vision, game playing, software engineering,
adaptive websites, robot locomotion, and structural health monitoring.
Machine learning techniques helped win a major software competition: in
2006, the online movie company Netflix held the first ‚Netflix Prize‛
competition to find a programme to better predict user preferences and
beat its existing Netflix movie recommendation system by at least 10%.
The AT&T Research Team BellKor won over several other teams with their

System Virtual Machines in Artificial Intelligence 255

machine learning programme called Pragmatic Chaos. After winning
several minor prizes, it won the 2009 grand prize competition for $1
million.

Software

RapidMiner, KNIME, Weka, ODM, Shogun toolbox, Orange and

Apache Mahout are software suites containing a variety of machine learning

algorithms.

MACHINE LEVEL OPERATIONS

Bits and Bytes

Down in the depths of your computer, below even the operating
system are bits of memory. These days we are used to working at such
a high level that it is easy to forget them. Bits (or binary digits) are the
lowest level software objects in a computer: there is nothing more primitive.
For precisely this reason, it is rare for high level languages to even
acknowledge the existence of bits, let alone manipulate them. Manipulating
bit patterns is usually the preserve of assembly language programmers.
C, however, is quite different from most other high level languages in that
it allows a programmer full access to bits and even provides high level
operators for manipulating them.

Bit Patterns

• All computer data, of any type, are bit patterns. The only difference
between a string and a floating point variable is the way in which
we choose to interpret the patterns of bits in a computer’s memory.
For the most part, it is quite unnecessary to think of computer data
as bit patterns; systems programmers, on the other hand, frequently
find that they need to handle bits directly in order to make efficient
use of memory when using flags. A flag is a message which is either
one thing or the other: in system terms, the flag is said to be ‘on’
or ‘off’ or alternatively set or cleared. The usual place to find flags
is in a status register of a CPU (central processor unit) or in a
pseudo-register (this is a status register for an imaginary processor,
which is held in memory). A status register is a group of bits (a byte
perhaps) in which each bit signifies something special. In an ordinary
byte of data, bits are grouped together and are interpreted to have
a collective meaning; in a status register they are thought of as being

256 Artificial Intelligence : Making a System Intelligent

independent. Programmers are interested to know about the contents
of bits in these registers, perhaps to find out what happened in a
programme after some special operation is carried out.

Flags, Registers and Messages

A register is a place inside a computer processor chip, where data are
worked upon in some way. A status register is a register which is used
to return information to a programmer about the operations which took
place in other registers.

Status registers contain flags which give yes or no answers to questions
concerning the other registers. In advanced programming, there may be
call for ‚pseudo registers‛ in addition to ‚real‛ ones. A pseudo register
is merely a register which is created by the programmer in computer
memory (it does not exist inside a processor). Messages are just like
pseudo status registers: they are collections of flags which signal special
information between different devices and/or different programs in a
computer system.

Messages do not necessarily have fixed locations: they may be passed
a parameters. Messages are a very compact way of passing information
to low level functions in a programme. Flags, registers, pseudo-registers
and messages are all treated as bit patterns.

A programme which makes use of them must therefore be able to
assign these objects to C variables for use. A bit pattern would normally
be declared as a character or some kind of integer type in C, perhaps with
the aid of a typedef statement.

typedef char byte;

typedef int bitpattern;

bitpattern variable;

byte message;

The flags or bits in a register/message. have the values 1 or 0, depending

upon whether they are on or off (set or cleared). A programme can test

for this by using combinations of the operators which C provides.

Bit Operators and Assignments

C provides the following operators for handling bit patterns:

<< Bit shift left (a specified number or bit positions)

>> Bit shift right(a specified number of bit positions)

| Bitwise Inclusive OR

System Virtual Machines in Artificial Intelligence 257

^ Bitwise Exclusive OR

& Bitwise AND

~ Bitwise one’s complement

&= And assign (variable = variable & value)

|= Exclusive OR assign (variable = variable | value)

^= Inclusive OR assign (variable = variable ^ value)

>>= Shift right assign (variable = variable >> value)

<<= Shift left assign (variable = variable << value)

Bit Operators

Bitwise operations are not to be confused with logical operations
(&&, ||.) A bit pattern is made up of 0s and 1s and bitwise operators
operate individually upon each bit in the operand. Every 0 or 1 undergoes
the operations individually. Bitwise operators (AND, OR) can be used in
place of logical operators (&&,||), but they are less efficient, because
logical operators are designed to reduce the number of comparisons made,
in an expression, to the optimum: as soon as the truth or falsity of an
expression is known, a logical comparison operator quits. A bitwise operator
would continue operating to the last before the final result were known.

Below is a brief summary of the operations which are performed by
the above operators on the bits of their operands.

Shift Operations

Imagine a bit pattern as being represented by the following group of
boxes. Every box represents a bit; the numbers inside represent their
values. The values written over the top are the common integer values
which the whole group of bits would have, if they were interpreted
collectively as an integer.

128 64 32 16 8 4 2 1

———————————————————————————————————————
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | = 1

———————————————————————————————————————
Shift operators move whole bit patterns left or right by shunting them

between boxes.

The syntax of this operation is:
value << number of positions

value >> number of positions

258 Artificial Intelligence : Making a System Intelligent

So for example, using the boxed value (1) above:
1 << 1

would have the value 2, because the bit pattern would have been
moved one place the the left:

128 64 32 16 8 4 2 1

——————————————————————————————————————
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | = 2

——————————————————————————————————————
Similarly:
1 << 4

has the value 16 because the original bit pattern is moved by four

places:
128 64 32 16 8 4 2 1

——————————————————————————————————————
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | = 16

——————————————————————————————————————
And:
6 << 2 == 12

128 64 32 16 8 4 2 1

——————————————————————————————————————
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | = 6

——————————————————————————————————————
Shift left 2 places:
128 64 32 16 8 4 2 1

——————————————————————————————————————
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | = 12

——————————————————————————————————————
Notice that every shift left multiplies by 2 and that every shift right

would divide by two, integerwise. If a bit reaches the edge of the group

of boxes then it falls out and is lost forever.

So:
1 >> 1 == 0

2 >> 1 == 1

2 >> 2 == 0

n >> n == 0

A common use of shifting is to scan through the bits of a bitpattern

one by one in a loop: this is done by using masks.

Truth Tables and Masking

The operations AND, OR (inclusive OR) and XOR/EOR (exclusive OR)

System Virtual Machines in Artificial Intelligence 259

perform comparisons or ‚masking‛ operations between two bits. They are
binary or dyadic operators. Another operation called COMPLEMENT is
a unary operator. The operations performed by these bitwise operators are
best summarized bytruth tables.

Truth tables indicate what the results of all possible operations are
between two single bits. The same operation is then carried out for all the
bits in the variables which are operated upon.

Complement ~ The complement of a number is the logical opposite of
the number. C provides a ‚one’s complement‛ operator which simply
changes all 1s into 0s and all 0s into 1s.

~1 has the value 0

(for each bit)

~0 has the value 1

As a truth table this would be summarized as follows:
~value

0

== result

1

1 0

AND &

This works between two va
value 1 & value 2

lues. e.g.
==

(1 & 0)
result

0 0 0

0 1 0

1 0 0

1 1 1

Both value 1 AND value 2 have to be 1 in order for the result or be 1.

OR |

This works between two values. e.g. (1 | 0)
value 1 | value 2 == result

0 0 0

0 1 1

1 0 1

1 1 1

The result is 1 if one OR the other OR both of the values is 1.

XOR/EOR ^

Operates on two values. e.g. (1 ^ 0)
value 1 ^ value 2 == result

0 0 0

0 1 1

260 Artificial Intelligence : Making a System Intelligent

1 0 1

1 1 0

The result is 1 if one OR the other (but not both) of the values is 1.

Bit patterns and logic operators are often used to make masks. A mask
is as a thing which fits over a bit pattern and modifies the result in order
perhaps to single out particular bits, usually to cover up part of a bit
pattern.

This is particularly pertinent for handling flags, where a programmer

wishes to know if one particular flag is set or not set and does not care

about the values of the others.

This is done by deliberately inventing a value which only allows the
particular flag of interest to have a non-zero value and then ANDing that
value with the flag register. For example: in symbolic language:

MASK = 00000001

VALUE1 = 10011011

VALUE2 = 10011100

MASK & VALUE1 == 00000001

MASK & VALUE2 == 00000000

The zeros in the mask masks off the first seven bits and leave only the
last one to reveal its true value. Alternatively, masks can be built up by
specifying several flags:

FLAG1 = 00000001

FLAG2 = 00000010

FLAG3 = 00000100

MESSAGE = FLAG1 | FLAG2 | FLAG3

MESSAGE == 00000111

It should be emphasized that these expressions are only written in
symbolic language: it is not possible to use binary values in C. The
programmer must convert to hexadecimal, octal or denary first.

Example

A simple example helps to show how logical masks and shift operations
can be combined. The first programme gets a denary number from the user
and converts it into binary. The second programme gets a value from the
user in binary and converts it into hexadecimal.

/* Bit Manipulation #1 */

/* Convert denary numbers into binary */

/* Keep shifting i by one to the left */

/* and test the highest bit. This does*/

/* NOT preserve the value of i */

System Virtual Machines in Artificial Intelligence 261

#include <stdio.h>

#define NUMBEROFBITS 8

main ()

{ short i,j,bit,;

short MASK = 0x80;

printf (“Enter any number less than 128: “);
scanf (“%h”, &i);
if (i > 128)

{

printf (“Too big\n”);
return (0);

}

printf (“Binary value = “);
for (j = 0; j < NUMBEROFBITS; j++)

{

bit = i & MASK;

printf (“%1d”,bit/MASK);
i <<= 1;

}

printf (“\n”);
}

/* end */

Output:

Enter any number less than 128: 56

Binary value = 00111000

Enter any value less than 128: 3

Binary value = 00000011

Example:
/* Bit Manipulation #2 */

/* Convert binary numbers into hex */

#include <stdio.h>

#define NUMBEROFBITS 8

main ()

{ short j,hex = 0;

short MASK;

char binary[NUMBEROFBITS];

printf (“Enter an 8-bit binary number: “);
for (j = 0; j < NUMBEROFBITS; j++)

{

binary[j] = getchar();

}

for (j = 0; j < NUMBEROFBITS; j++)

{

262 Artificial Intelligence : Making a System Intelligent

hex <<= 1;

switch (binary[j])

{

case „1‟: MASK = 1;
break;

case „0‟: MASK = 0;
break;

default:printf(“Not binary\n”);
return(0);

}

hex |= MASK;

}

printf (“Hex value = %1x\n”,hex);
}

/* end */

Example:
Enter any number less than 128: 56

Binary value = 00111000

Enter any value less than 128: 3

Binary value = 00000011

VIRTUAL MACHINE AND CLIENT SERVER

Virtual Machine

A virtual machine (VM) abides an operating system OS or conduct
environment that is embedded on software which copies consecrated
hardware. The end user embraces the equivalent experience on a virtual
machine as they would acquire on dedicated hardware.

Individualized software designated a hypervisor copies the PC client
or server’s CPU, memory, hard disk, network as well as other hardware
resources collectively, allowing virtual appliances to participate the
resources. The hypervisor can copy integral virtual hardware platforms
that are occasional from each other, assigning virtual machines to run
Linux as well as Windows server operating systems on the identical
underlying physical aggregation.

Virtualization conserves costs by depreciating the need for physical
hardware systems. Virtual machines additional desirably use hardware,
which lowers the quantities of hardware as well as associated maintenance
costs, along with reduces power furthermore cooling demand. They also
allay management due to virtual hardware does not collapse.

System Virtual Machines in Artificial Intelligence 263

Administrators can take advantage of virtual circumstances to simplify
backups, disaster recovery, new deployments as well as elementary system
administration tasks.

Virtual machines do not constrain distinguished hypervisor-specific
hardware. Virtualization appears although require more bandwidth,
storage along with processing capacity than a conventional server or
desktop if the physical hardware is going to host multiple running virtual
machines.

VMs can easily move, be copied and reassigned between host servers
to optimize hardware resource utilization. Because VMs on a physical host
can consume unequal resource quantities, IT professionals must balance
VMs with available resources.

Client Server

Client/server is a programme relationship in which one programme
(the client) requests a service or resource from another programme (the
server). It is seen that in client/server model, the programmes are used by
single computer only.

It serves as an important concept for networking. Here, the client
makes a connection with the server through local area network (LAN)
or wide-area network (WAN) like Internet. After clearing the client’s
request, the connection gets terminated. In this case, Web browser serves
as a client programme which further appeals for a service from the
server. The service and resource of the server will show the delivery of
such Web page.

Computer assignments in which the server accomplishes a request
created by a client are very customary furthermore the client/server model
has serve one of the main concepts of network computing. Most business
approaches facilitate the client/server model as appears acts the Internet’s
core programme, TCP/IP.

For exemplary, when you examine a bank account from the computer,
a client approximation in computer overtures a request to a server
programme at the bank which in twist forward a approach to its own client
programme and conveys a request to a database server at another bank
computer. Once the account balance sheet has been acquired from the
database, it is acknowledged back to the bank data client, who in turn
applies it back to the client in his/her personal computer that displays the
information.

264 Artificial Intelligence : Making a System Intelligent

Both client programmes as well as server programmes are usual
constituent of a larger programme or application. On account of multiple
client programmes participate the services of the equivalent server
programme, a special server identified a daemon may be charged due to
anticipate client requests. In marketing, the client/server had been once
used to differentiate allocated computing by personal computers (PCs)
from the monolithic, concentrated computing model exercised by
mainframes. This differentiation has largely evaporated, although, as
mainframes along with their applications possess additionally turned to
the client/server model further become part of network computing.

Types of Operating System

There are abundant Operating Systems those monopolize be
constructed for functioning the performances which are demanded by the
user. There are many different types of Operating Systems which acquire
the ability to behave the entreaties acquired from different approach. The
Operating system can behave in a unique operation and furthermore
multiple movements at duration, so there are many categories of operating
systems those are arranged by utilizing their working mechanisms.

There are many types of operating system such as:

• Serial Processing

• Batch Processing

• Multi-Programming

• Real Time System

• Distributed Operating System

• Multiprocessing

• Parallel operating systems.

Real Time Systems

There appears additionally an operating system which is
comprehended as Real Time Processing System in which duration is already
adjusted. Indicates duration to show the after-effects after acquiring has
adjusted by the Processor or CPU.

Real Time System is exercised at those areas in which we binds higher
along with well-timed return. Such categories of approaches are exercised
in reservation, so when we discriminate the demand, the CPU will conduct
at that duration.

System Virtual Machines in Artificial Intelligence 265

There are two types of Real Time System:

• Hard Real Time System: In Hard Real Time System, time is fixed
and we can’t change any moments of time of processing as the CPU
will process the data as we enter it.

• Soft Real Time System: In Soft Real Time System, some moments

can be change as after giving the command to CPU, the CPU will

perform the operation after certain microseconds.

Multi-user System

As we comprehend that in case of Batch Processing System, there
are results many jobs by the System. The System foremost compose a
batch furthermore and will accomplish all jobs which gets saved in the
Batch.

Also, the innermost difficulty is that if a mechanism or jobs needs an
input as well as output operation, in such case, it is not achievable and
there will be the wastage of the duration when composing the batch
processing as CPU will remain idle during the particular time.

Although with the help of multi programming we can achieve multiple
programmes on the system at a duration as besides in multi-programming,
the CPU determination never gets idle, so with the help of Multi-
Programming we can achieve ample algorithms on system when functioning
with programme and can acknowledge the supplement or other programme
for sprinting extra CPU that will at that time behaves as secondary
programme following the completion of original programme. Also in this,
we can further differentiate our input means which a user can additionally
interact with the system.

The multi-programming operating systems never utilize many cards
on account of approach that is accessed on the spot by the user. Since the
Operating System also utilizes the process of allocation and de-allocation
of the memory which shows providing memory space to all the running
and all waiting processes. There must be the proper management of all
the running jobs.

Distributed System

Distributed means data is stored and processed on multiple locations.
When a data is stored on to the multiple computers, those are placed in
different locations. Distributed in terms of network means, network collections
of computers connected with each other.

266 Artificial Intelligence : Making a System Intelligent

If you want to take some data from other computer, then we uses the
distributed processing system, as we can also insert and remove the data
from one location to another location.

In this, data is shared between many users, and we can also access

all the Input and Output Devices by Multiple Users.

Other Types

There are other worthwhile types of operating systems not made by
Microsoft. The greatest problem with these operating systems lies in the
fact that not as many application programmes are written for them. However
if you can get the type of application programmes you are looking for, one
of the systems listed below may be a good choice.

• Unix: A system that has been around for many years and it is very
stable. It is primary used to be a server rather than a workstation
and should not be used by anyone who does not understand the
system. It can be difficult to learn. Unix must normally run an a
computer made by the same company that produces the software.

• Linux: Linux is similar to Unix in operation but it is free. It also should

not be used by anyone who does not understand the system and can

be difficult to learn.

• Apple MacIntosh: Most recent versions are based on Unix but it has
a good graphical interface so it is both stable (does not crash often
or have as many software problems as other systems may have) and
easy to learn. One drawback to this system is that it can only be
run on Apple produced hardware.

SYSTEM VIRTUAL MACHINE

In computing, a system virtual machine is a virtual machine that
provides a complete system platform and supports the execution of a
complete operating system (OS). These usually emulate an existing
architecture, and are built with the purpose of either providing a platform
to run programs where the real hardware is not available for use (for
example, executing on otherwise obsolete platforms), or of having multiple
instances of virtual machines leading to more efficient use of computing
resources, both in terms of energy consumption and cost effectiveness
(known as hardware virtualization, the key to a cloud computing
environment), or both. A VM was originally defined by Popek and Goldberg
as ‚an efficient, isolated duplicate of a real machine‛.

System Virtual Machines in Artificial Intelligence 267

System virtual machines

System virtual machine advantages:

• Multiple OS environments can co-exist on the same primary hard
drive, with a virtual partition that allows sharing of files generated
in either the ‚host‛ operating system or ‚guest‛ virtual environment.
Adjunct software installations, wireless connectivity, and remote
replication, such as printing and faxing, can be generated in any
of the guest or host operating systems. Regardless of the system,
all files are stored on the hard drive of the host OS.

• Application provisioning, maintenance, high availability and disaster
recovery are inherent in the virtual machine software selected.

• Can provide emulated hardware environments different from the
host’s instruction set architecture (ISA), through emulation or by
using just-in-time compilation.

The main disadvantages of VMs are:

• A virtual machine is less efficient than an actual machine when it
accesses the host hard drive indirectly.

• When multiple VMs are concurrently running on the hard drive of
the actual host, adjunct virtual machines may exhibit a varying and/
or unstable performance (speed of execution and malware
protection). This depends on the data load imposed on the system
by other VMs, unless the selected VM software provides temporal
isolation among virtual machines.

• Malware protections for VMs are not necessarily compatible with
the ‚host‛, and may require separate software.

Multiple VMs running their own guest operating system are frequently

engaged for server consolidation in order to avoid interference from

separate VMs on the same actual machine platform.

The desire to run multiple operating systems was the initial motivation

for virtual machines, so as to allow time-sharing among several single-

tasking operating systems.

In some respects, a system virtual machine can be considered a
generalization of the concept of virtual memory that historically preceded
it. IBM’s CP/CMS, the first systems to allow full virtualization, implemented
time sharing by providing each user with a single-user operating system,
the CMS. Unlike virtual memory, a system virtual machine entitled the
user to write privileged instructions in their code. This approach had

268 Artificial Intelligence : Making a System Intelligent

certain advantages, such as adding input/output devices not allowed by

the standard system.

As technology evolves virtual memory for purposes of virtualization,
new systems of memory overcommitment may be applied to manage
memory sharing among multiple virtual machines on one actual computer
operating system. It may be possible to share ‚memory pages‛ that have
identical contents among multiple virtual machines that run on the same
physical machine, what may result in mapping them to the same physical
page by a technique known as Kernel SamePage Merging. This is
particularly useful for read-only pages, such as those that contain code
segments; in particular, that would be the case for multiple virtual machines
running the same or similar software, software libraries, web servers,
middleware components, etc.

The guest operating systems do not need to be compliant with the host
hardware, thereby making it possible to run different operating systems
on the same computer (e.g., Microsoft Windows, Linux, or previous versions
of an operating system) to support future software.

The use of virtual machines to support separate guest operating systems
is popular in regard to embedded systems. A typical use would be to run
a real-time operating system simultaneously with a preferred complex
operating system, such as Linux or Windows. Another use would be for
novel and unproven software still in the developmental stage, so it runs
inside a sandbox. Virtual machines have other advantages for operating
system development, and may include improved debugging access and
faster reboots.

Techniques

Different virtualization techniques are used, based on the desired
usage. Native execution is based on direct virtualization of the underlying
raw hardware, thus it provides multiple ‚instances‛ of the same architecture
a real machine is based on, capable of running complete operating systems.
Some virtual machines can also emulate different architectures and allow
execution of software applications and operating systems written for another
CPU or architecture. Operating-system-level virtualization allows the
resources of a computer to be partitioned via kernel’s support for multiple
isolated user space instances, which are usually called containers and may
look and feel like real machines to the end users. Some computer
architectures are capable of hardware-assisted virtualization, which enables

System Virtual Machines in Artificial Intelligence 269

efficient full virtualization by using virtualization-specific hardware

capabilities, primarily from the host CPUs.

Virtualization of the underlying raw hardware (native execution)

This approach is described as full virtualization of the hardware, and
can be implemented using a type 1 or type 2 hypervisor: a type 1 hypervisor
runs directly on the hardware, and a type 2 hypervisor runs on another
operating system, such as Linux or Windows.

Each virtual machine can run any operating system supported by
the underlying hardware. Users can thus run two or more different
‚guest‛ operating systems simultaneously, in separate ‚private‛ virtual
computers.

The pioneer system using this concept was IBM’s CP-40, the first
(1967) version of IBM’s CP/CMS (1967–1972) and the precursor to IBM’s
VM family (1972–present). With the VM architecture, most users run a
relatively simple interactive computing single-user operating system, CMS,
as a ‚guest‛ on top of the VM control program (VM-CP). This approach
kept the CMS design simple, as if it were running alone; the control
program quietly provides multitasking and resource management services
‚behind the scenes‛. In addition to CMS communication and other system
tasks are performed by multitasking VMs (RSCS, GCS, TCP/IP, UNIX), and
users can run any of the other IBM operating systems, such as MVS, even
a new CP itself or now z/OS. Even the simple CMS could be run in a
threaded environment (LISTSERV, TRICKLE). z/VM is the current version
of VM, and is used to support hundreds or thousands of virtual machines
on a given mainframe. Some installations use Linux on IBM Z to run Web
servers, where Linux runs as the operating system within many virtual
machines.

Full virtualization is particularly helpful in operating system
development, when experimental new code can be run at the same time
as older, more stable, versions, each in a separate virtual machine. The
process can even be recursive: IBM debugged new versions of its virtual
machine operating system, VM, in a virtual machine running under an
older version of VM, and even used this technique to simulate new
hardware.

The standard x86 instruction set architecture as used in the modern
PCs does not actually meet the Popek and Goldberg virtualization
requirements. Notably, there is no execution mode where all sensitive

270 Artificial Intelligence : Making a System Intelligent

machine instructions always trap, which would allow per-instruction

virtualization.

Despite these limitations, several software packages have managed to
provide virtualization on the x86 architecture, even though dynamic
recompilation of privileged code, as first implemented by VMware, incurs
some performance overhead as compared to a VM running on a natively
virtualizable architecture such as the IBM System/370 or Motorola MC68020.
By now, several other software packages such as Virtual PC, VirtualBox,
Parallels Workstation and Virtual Iron manage to implement virtualization
on x86 hardware.

Intel and AMD have introduced features to their x86 processors to

enable virtualization in hardware.

As well as virtualization of the resources of a single machine, multiple

independent nodes in a cluster can be combined and accessed as a single

virtual NUMA machine.

Emulation of a non-native system

Virtual machines can also perform the role of an emulator, allowing
software applications and operating systems written for another computer
processor architecture to be run.

Operating-system-level virtualization

Operating-system-level virtualization is a server virtualization

technology which virtualizes servers on an operating system (kernel)

layer.

It can be thought of as partitioning: a single physical server is sliced
into multiple small partitions (otherwise called virtual environments (VE),
virtual private servers (VPS), guests, zones, etc.); each such partition looks
and feels like a real server, from the point of view of its users.

For example, Solaris Zones supports multiple guest operating systems
running under the same operating system such as Solaris 10. Guest operating
systems can use the same kernel level with the same operating system
version, or can be a separate copy of the operating system with a different
kernel version using Solaris Kernel Zones. Solaris native Zones also requires
that the host operating system is a version of Solaris; other operating
systems from other manufacturers are not supported. However, Solaris
Branded Zones would need to be used to have other operating systems
as zones.

System Virtual Machines in Artificial Intelligence 271

Another example is System Workload Partitions (WPARs), introduced
in version 6.1 of the IBM AIX operating system. System WPARs are software
partitions running under one instance of the global AIX OS environment.

The operating system level architecture has low overhead that helps
to maximize efficient use of server resources. The virtualization introduces
only a negligible overhead and allows running hundreds of virtual private
servers on a single physical server. In contrast, approaches such as full
virtualization (like VMware) and paravirtualization (like Xen or UML)
cannot achieve such level of density, due to overhead of running multiple
kernels. From the other side, operating system-level virtualization does
not allow running different operating systems (i.e., different kernels),
although different libraries, distributions, etc. are possible. Different
virtualization techniques are used, based on the desired usage. Native
execution is based on direct virtualization of the underlying raw hardware,
thus it provides multiple ‚instances‛ of the same architecture a real machine
is based on, capable of running complete operating systems. Some virtual
machines can also emulate different architectures and allow execution of
software applications and operating systems written for another CPU or
architecture. Operating-system-level virtualization allows the resources of
a computer to be partitioned via kernel’s support for multiple isolated user
space instances, which are usually called containers and may look and feel
like real machines to the end users. Some computer architectures are
capable of hardware-assisted virtualization, which enables efficient full
virtualization by using virtualization-specific hardware capabilities,
primarily from the host CPUs.

Virtualization-enabled hardware

Examples of virtualization-enabled hardware include the following:

• Alcatel-Lucent 3B20D/3B21D emulated on commercial off-the-shelf

computers with 3B2OE or 3B21E system

• ARM TrustZone

• Boston Circuits gCore (grid-on-chip) with 16 ARC 750D cores and
Time-machine hardware virtualization module.

• Freescale PowerPC MPC8572 and MPC8641D

• IBM System/360 Model 67, System/370, System/390, and zSeries
mainframes

• IBM Power Systems

• x86:

272 Artificial Intelligence : Making a System Intelligent

o AMD-V (formerly code-named Pacifica)

o Intel VT-x (formerly code-named Vanderpool)

• HP vPAR and cell based nPAR

• GE and Honeywell Multics systems

• Honeywell 200/2000 systems Liberator replacing IBM 14xx systems

• Honeywell Level 62/64/66

• IBM System/360 and System/370 models with emulators supporting

programs for older IBM systems

• Honeywell Level 6 minicomputers emulated predecessor 316/516/
716 minis

• Oracle Corporation (previously Sun Microsystems) SPARC sun4v
(SPARC M6, T5, T4, T3, UltraSPARC T1 and T2) – utilized by Oracle
VM Server for SPARC, also known as ‚Logical Domains‛

• Xerox Sigma 6 CPUs were modified to emulate GE/Honeywell 600/

6000 systems

HARDWARE VIRTUALIZATION

Hardware virtualization is the virtualization of computers as complete
hardware platforms, certain logical abstractions of their componentry, or
only the functionality required to run various operating systems.
Virtualization hides the physical characteristics of a computing platform
from the users, presenting instead an abstract computing platform. At its
origins, the software that controlled virtualization was called a ‚control
program‛, but the terms ‚hypervisor‛ or ‚virtual machine monitor‛ became
preferred over time.

Concept

The term ‚virtualization‛ was coined in the 1960s to refer to a virtual
machine (sometimes called ‚pseudo machine‛), a term which itself dates
from the experimental IBM M44/44X system. The creation and management
of virtual machines has been called ‚platform virtualization‛, or ‚server
virtualization‛, more recently.

Platform virtualization is performed on a given hardware platform by
host software (a control program), which creates a simulated computer
environment, a virtual machine (VM), for its guest software. The guest
software is not limited to user applications; many hosts allow the execution
of complete operating systems. The guest software executes as if it were

System Virtual Machines in Artificial Intelligence 273

running directly on the physical hardware, with several notable caveats.
Access to physical system resources (such as the network access, display,
keyboard, and disk storage) is generally managed at a more restrictive
level than the host processor and system-memory. Guests are often restricted
from accessing specific peripheral devices, or may be limited to a subset
of the device’s native capabilities, depending on the hardware access
policy implemented by the virtualization host.

Virtualization often exacts performance penalties, both in resources
required to run the hypervisor, and as well as in reduced performance on
the virtual machine compared to running native on the physical machine.

Reasons for virtualization

• In the case of server consolidation, many small physical servers are
replaced by one larger physical server to decrease the need for
more (costly) hardware resources such as CPUs, and hard drives.
Although hardware is consolidated in virtual environments, typically
OSs are not. Instead, each OS running on a physical server is
converted to a distinct OS running inside a virtual machine. Thereby,
the large server can ‚host‛ many such ‚guest‛ virtual machines.
This is known as Physical-to-Virtual (P2V) transformation.

• In addition to reducing equipment and labor costs associated with
equipment maintenance, consolidating servers can also have the
added benefit of reducing energy consumption and the global
footprint in environmental-ecological sectors of technology. For
example, a typical server runs at 425 W and VMware estimates a
hardware reduction ratio of up to 15:1.

• A virtual machine (VM) can be more easily controlled and inspected
from a remote site than a physical machine, and the configuration
of a VM is more flexible. This is very useful in kernel development
and for teaching operating system courses, including running legacy
operating systems that do not support modern hardware.

• A new virtual machine can be provisioned as required without the

need for an up-front hardware purchase.

• A virtual machine can easily be relocated from one physical machine
to another as needed. For example, a salesperson going to a customer
can copy a virtual machine with the demonstration software to their
laptop, without the need to transport the physical computer.
Likewise, an error inside a virtual machine does not harm the host
system, so there is no risk of the OS crashing on the laptop.

274 Artificial Intelligence : Making a System Intelligent

• Because of this ease of relocation, virtual machines can be readily
used in disaster recovery scenarios without concerns with impact
of refurbished and faulty energy sources.

However, when multiple VMs are concurrently running on the same
physical host, each VM may exhibit varying and unstable performance
which highly depends on the workload imposed on the system by other
VMs. This issue can be addressed by appropriate installation techniques
for temporal isolation among virtual machines.

There are several approaches to platform virtualization.

Examples of virtualization use cases:

• Running one or more applications that are not supported by the
host OS: A virtual machine running the required guest OS could
permit the desired applications to run, without altering the host OS.

• Evaluating an alternate operating system: The new OS could be run

within a VM, without altering the host OS.

• Server virtualization: Multiple virtual servers could be run on a

single physical server, in order to more fully utilize the hardware

resources of the physical server.

• Duplicating specific environments: A virtual machine could,
depending on the virtualization software used, be duplicated and
installed on multiple hosts, or restored to a previously backed-up
system state.

• Creating a protected environment: If a guest OS running on a VM
becomes damaged in a way that is not cost-effective to repair, such
as may occur when studying malware or installing badly behaved
software, the VM may simply be discarded without harm to the
host system, and a clean copy used upon rebooting the guest .

Full virtualization

In full virtualization, the virtual machine simulates enough hardware
to allow an unmodified ‚guest‛ OS designed for the same instruction set
to be run in isolation. This approach was pioneered in 1966 with the IBM
CP-40 and CP-67, predecessors of the VM family.

Hardware-assisted virtualization

In hardware-assisted virtualization, the hardware provides
architectural support that facilitates building a virtual machine monitor
and allows guest OSs to be run in isolation. Hardware-assisted virtualization

System Virtual Machines in Artificial Intelligence 275

was first introduced on the IBM System/370 in 1972, for use with VM/370,

the first virtual machine operating system.

In 2005 and 2006, Intel and AMD provided additional hardware to

support virtualization. Sun Microsystems (now Oracle Corporation) added

similar features in their UltraSPARC T-Series processors in 2005.

In 2006, first-generation 32- and 64-bit x86 hardware support was
found to rarely offer performance advantages over software virtualization.

Paravirtualization

In paravirtualization, the virtual machine does not necessarily simulate
hardware, but instead (or in addition) offers a special API that can only
be used by modifying the ‚guest‛ OS. For this to be possible, the ‚guest‛
OS’s source code must be available. If the source code is available, it is
sufficient to replace sensitive instructions with calls to VMM APIs (e.g.:
‚cli‛ with ‚vm_handle_cli()‛), then re-compile the OS and use the new
binaries. This system call to the hypervisor is called a ‚hypercall‛ in
TRANGO and Xen; it is implemented via a DIAG (‚diagnose‛) hardware
instruction in IBM’s CMS under VM (which was the origin of the term
hypervisor)..

Operating-system-level virtualization

In operating-system-level virtualization, a physical server is virtualized
at the operating system level, enabling multiple isolated and secure
virtualized servers to run on a single physical server. The ‚guest‛ operating
system environments share the same running instance of the operating
system as the host system. Thus, the same operating system kernel is also
used to implement the ‚guest‛ environments, and applications running
in a given ‚guest‛ environment view it as a stand-alone system.

Hardware virtualization disaster recovery

A disaster recovery (DR) plan is often considered good practice for
a hardware virtualization platform. DR of a virtualization environment
can ensure high rate of availability during a wide range of situations that
disrupt normal business operations. In situations where continued
operations of hardware virtualization platforms is important, a disaster
recovery plan can ensure hardware performance and maintenance
requirements are met. A hardware virtualization disaster recovery plan
involves both hardware and software protection by various methods,
including those described below.

276 Artificial Intelligence : Making a System Intelligent

Tape backup for software data long-term archival needs. This common
method can be used to store data offsite, but data recovery can be a
difficult and lengthy process. Tape backup data is only as good as the latest
copy stored. Tape backup methods will require a backup device and
ongoing storage material.

Whole-file and application replication

The implementation of this method will require control software and
storage capacity for application and data file storage replication typically
on the same site. The data is replicated on a different disk partition or
separate disk device and can be a scheduled activity for most servers and
is implemented more for database-type applications.

Hardware and software redundancy

This method ensures the highest level of disaster recovery protection

for a hardware virtualization solution, by providing duplicate hardware

and software replication in two distinct geographic areas.

Bibliography 277

Bibliography

Baumann, P. R.: Computer Assisted Instruction Programs in Geography: Five Climate
Programs, Oneonta, New York, 1970.

Bhaskara Rao: Military Conversion : Impact on Science and Technology, Discovery,
Delhi, 2003.

Bird, R., Brown, R., & Howard, P.: Business Finance, Roseville, 1990

Bird, Richard: Federal Finance in Comparative Perspective, Toronto, Canadian Tax
Foundation, 1986.

Damrosch, L.F.: Law and Force in the New International Order, Boulder, Westview
Press, 1991.

Davies .A.: Telecommunications and Politics. The Secentralised Alternative, London,
Pinter, 1994.

Devlin B. : Data Warehouse: From Architecture to Implementation, Addison-Wesley,
1997.

Goldsmith, W.: The Financial Development of India, 1860-1977, New Haven, Yale
University Press, 1983.

Holzmann, Gerald J. and Bjorn Pehrson: The Early History of Data Networks, Los
Alamitos, CA, IEEE Computer Society Press, 1994.

Hurewitz, Jacob C.: Diplomacy in the Near and Middle East: A Documentary Record
1535-1914, Princeton, New Jersey, 1956.

James R.: The Control Revolution: Technological and Economic Origins of the Information
Society, Cambridge, MA: Harvard University Press, 1986.

James W.: The Computer in the United States: From Laboratory to Market, 1930-1960,
Armonk, NY: M. E. Sharpe, 1993.

John Keegan, Intelligence in War. New York: Knopf, 2003.

Katherine Davis: The Computer Establishment, New York: McGraw-Hill, 1981.

Kidder, Tracy: Soul of a New Machine, New York, Avon, 1981.

Kimball Ralph : The Data Warehouse Toolkit, , Wiley, 1996.

Laura Brav: The Practical Guide to Humanitarian Law, Lanham, MD: Rowman &
Littlefield Publishers, Inc., 2007.

MacKinley, A.C.: The Econometrics of Financial Markets, Princeton University Press,
1996.

Margaret A. Ellis: Designing and Coding Reusable C++, Addison-Wesley, 1995.

Müller-Brockmann, Josef: The Graphic Designer and His Design Problems. New York:
Hastings House, 1983.

278 Artificial Intelligence : Making a System Intelligent

Peter Lancaster and Kestutis Salkauskas: ‚Curve and Surface Fitting, An Introduction ,‛
Academic Press, New York, 1986.

Rand, Paul. Design Form and Chaos. New Haven: Yale University Press, 1993.

Rao, N. Venkateshwara and Prashant K. Mathur: Handbook of Animation, Cartoon
and Multimedia, Kanishka, Delhi, 2008.

Ravishankar, S. : Computer Graphics OOPS with C++, Himalaya, Delhi, 2000.

Ray Harryhausen and Tony Dalton, A Century of Stop Motion Animation: From Mélès
to Aardman. New York: Watson-Guptil Publications, 2008.

Reiley, A. C.: Onward Industry, New York, 1931.

Ruchi Mishra: Computer Graphics, Global Vision Pub, Delhi, 2010.

Samara, Timothy. Design Elements: A Graphic Style Manual. Rockport Publishers;
2007.

Shukla, A.S. : Handbook of Multimedia and Animation, Rajat Pub, Delhi, 2008.

Sidnie Feit: TCP/IP: Architecture, Protocols, and Implementation. McGraw-Hill, 1993.

Slagmulder, R. : Interorganizational Cost Management, Productivity Press, 1999.

Stephen Cavalier, The World History of Animation. Berkley, California: University
of California Press, 2011.

Stinson, R. : Cryptography: Theory and Practice, Chapman & Hall/CRC, 2006.

Stone, H.S.: Introduction to Computer Architecture. Chicago, Ill.: Science Research
Associates, 1980.

Stross, Randall: The Microsoft Way, The Real Story of How the Company Outsmarts
Its Competition, New York: Addison-Wesley, 1996.

Tayal, Sumit Prakash: Computer Network, Laxmi Pub, Delhi, 2009.

Teukolsky, S.A. and W.T. Vetterling. Numerical Recipes in C. Cambridge University
Press, Cambridge, England, 1988.

Ullman J.D.; The Design and Analysis of Computer Algorithms; Addison-Wesley, 1974.

Vince, John: ‚3-D Computer Animation,‛ Addison-Wesley, New York, 1992.

Warren S.: The Embodiments of Mind. MIT Press, Cambridge, 1965.

William Aspray: Computer, A History of the Information Machine, New York, Basic
Books, 1996.

Ye, Nong: The Handbook of Data Mining, Mahwah, NJ: Lawrence Erlbaum, 2003.

Zhidkov, N. P. : Computing Methods, Pergamon Press, Oxford and Addison-Wesley,

Reading, Mass., 1965.

Index 279

Index

A

Acting humanly, 50.

Agent Environment, 13, 14, 17.

Agents in Artificial Intelligence, 67, 71,

72, 73, 75, 76, 98.

Alan Turing, 13, 22, 34, 44, 50, 90,

121, 171.

Algorithm Trading, 196.

Algorithmic Efficiency, 172.

Algorithmic Trading, 7, 172, 195,

200, 207.

Anticipatory Socialization, 123, 124,

127.

Applications of Artificial Intelligence,
8, 105, 114.

Approach of Artificial Intelligence, 35.

Artificial General Intelligence, 1, 21,
89.

Artificial Intelligence Systems, 33.

Artificial Neural Network, 1, 34, 36,
55, 88, 149, 252.

Autonomous Systems, 138.

B

Biological Neurons, 57.

Customer Service, 27.

D

Data Granularity, 190.

Data Presentation, 177.

Deep Learning, 17, 18, 19, 20, 22,
23, 25, 34, 92, 140, 149, 164,
169, 254.

Delta Neutral Strategies, 203.

E

Environments in Artificial Intelligence,
15.

Ethics of Artificial Intelligence, 142.

Exploring Intelligent Agents, 71.

F

Financial Institutions, 109.

G

General Artificial Intelligence, 26.

Genetic Algorithm, 188.

H
Hardware Virtualization, 266, 271,

272, 275, 276.

Branches of Artificial Intelligence, 38. Hash Function Algorithms, 184.
 High-Frequency Trading, 206.

C Hill Climbing, 75, 208, 230, 231,

Computer Projects, 33. 232, 233, 237, 238, 239, 240.

Current Machine Learning, 138, 164. Human Interaction, 251.

280 Artificial Intelligence : Making a System Intelligent

Human Minds, 44, 51.

I

Image Processing, 24, 129.

Impact of Artificial Intelligence, 2, 24.

Informed Search, 75, 208, 223, 224,

235, 240.

Neural Network, 1, 18, 19, 20, 26,
27, 30, 31, 34, 36, 48, 55,
56, 57, 59, 60, 88, 107, 108,

137, 149, 169, 252.

P

Pair Trading, 203.

L

Learning Applications, 150, 151.

M

Machine Learning, 8, 18, 27, 28, 29,

R
Rational Agent, 53, 61, 62, 63, 69,

76, 78, 79, 85, 96, 97.

Reconfigurable Computing, 128, 129,

130, 131.

Reinforcement Learning, 253.

Representation Learning, 254.

Robotics in Modern Applications, 149.

Roots of Artificial Intelligence, 119.

S

30, 32, 33, 34, 75, 92, 111, Software Metrics, 172.
114, 138, 139, 142, 146, 149, Statistical Arbitrage, 207.
168, 250. Strategic Intelligence, 154, 155, 156,

Machine Level Operations, 255. 157, 158, 159, 160, 161, 162,
Military Planning, 159. 163.

Modern Applications, 149. Subroutine Granularity, 190.

N
System Virtual Machine, 246,

267.
266,

National Security, 151, 153, 158.
Natural Language Processing, 21, 34,

50, 51, 110, 113, 169, 254.

System Virtual Machines, 245,
248, 267.

246,

Intelligence Community, 151, 152,
153, 154, 158, 159, 162, 163.

Intelligent Agent, 61, 62, 64, 66, 67,
68, 69, 70, 71, 78, 79, 98,
117.

International Law, 144.

ABOUT THE AUTHOR

Ahmad Ali AlZubi is a full Professor at Computer Science Department, King Saud
University, Saudi Arabia. He obtained his PhD from National Technical University of
Ukraine (NTUU) in Computer Networks Engineering in 1999. His current research
interests include but not limited to Computer Networks, Grid Computing, Cloud
Computing, AI, Machine learning and Deep Learning and their applications in various
fields, and services automation. He has also gained valuable industry experience, having
worked as a consultant and a member of the Saudi National Team for E-Government in
Saudi Arabia. He has author a book title Heart Disease Prediction Using Machine
Learning having ISBN: 978-81-19477-42-5

Abdulrhman A. Alkhanifer is a computer scientist with a passion for digital
transformation. He leverages his academic background and industry experience to drive
innovation in this field. Presently he is an Assistant Professor in the Computer Science
Department, King Saud University, Saudi Arabia.

Beyond academia, he holds leadership positions that fuel digital transformation efforts.
He serves as the Dean of E-Transactions and Telecommunication at King Saud
University, and is also the CEO of Knowledge Developers, a university-owned company
specializing in digital solutions. Dr. Alkhanifer's expertise extends beyond his own
institutions. He is a sought-after advisor for both government and private entities.

His research interests reflect his focus on digital transformation, lying at the intersection
of software engineering, user experience (UX) design, machine learning, and artificial
intelligence (AI).

ABOUT THE BOOK

Artificial Intelligence (AI) involves creating systems that exhibit intelligent behavior, mimicking cognitive
functions such as learning, reasoning, problem-solving, perception, and language understanding. At its
core, AI seeks to develop algorithms and models that enable machines to perform tasks typically requiring
human intelligence. These tasks range from simple pattern recognition and data processing to complex
decision-making and autonomous operation. Intelligent Systems, encompassing AI, extend their reach
beyond traditional AI applications. This broader term includes technologies like expert systems,
knowledge-based systems, and robotics. Intelligent Systems aim not only to replicate human-like
intelligence but also to adapt and interact intelligently with dynamic environments. Artificial Intelligence
(AI) aims to create systems capable of performing tasks that typically require human intelligence, such as
learning, reasoning, and problem-solving. Key technologies include Machine Learning (ML), which
enables systems to learn from data; Natural Language Processing (NLP), which allows for understanding
and generating human language; and Computer Vision, which interprets visual information. AI-powered
robotics combine these technologies to navigate and interact with environments autonomously. While AI
presents vast opportunities for innovation and efficiency, it also raises ethical considerations regarding
privacy, security, and fairness, underscoring the need for responsible development and deployment.
Artificial Intelligence for Beginners explores the foundational concepts, technologies, and applications
that enable machines to perform tasks requiring human-like intelligence.

India | UAE | Nigeria | Malaysia | Montenegro | Iraq | Egypt | Thailand | Uganda | Philippines | Indonesia

IARA Publication || www.iarapublication.com || info@iarapublication.com

